InfoChartQA / README2.md
Jietson's picture
Upload 2 files
4544530 verified
metadata
dataset_info:
  features:
    - name: question_id
      dtype: string
    - name: qtype
      dtype: string
    - name: figure_path
      dtype: image
    - name: visual_figure_path
      list: image
    - name: question
      dtype: string
    - name: answer
      dtype: string
    - name: instructions
      dtype: string
    - name: prompt
      dtype: string
    - name: options
      list: string
  splits:
    - name: info
      num_bytes: 9389294399
      num_examples: 55091
    - name: plain
      num_bytes: 15950918129
      num_examples: 55091
    - name: visual_metaphor
      num_bytes: 144053150
      num_examples: 450
    - name: visual_basic
      num_bytes: 1254942699.466
      num_examples: 7297
  download_size: 20376840742
  dataset_size: 26739208377.466
configs:
  - config_name: default
    data_files:
      - split: info
        path: data/info-*
      - split: plain
        path: data/plain-*
      - split: visual_metaphor
        path: data/visual_metaphor-*
      - split: visual_basic
        path: data/visual_basic-*

InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts

xbhs3🤗Dataset

Dataset

You can find our dataset on huggingface: 🤗InfoChartQA Dataset

Usage

Each question entry is arranged as:

--question_id: int
--qtype: int
--figure_path: image
--visual_figure_path: list of image
--question: str
--answer: str
--instructions: str
--prompt: str
--options: list of dict ("A/B/C/D":"option_content")

Each question is built as:

image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any)
text_input: prompt (if any) + question + options (if any) + instructions (if any)

Evaluate

You should store and evaluate model's response as:

# Example code for evaluate
def build_question(query):#to build the question
    question = ""
    if "prompt" in query:
        question = question + f"{query["prompt"]}\n"
    question = question + f"{query["question"]}\n"
    if "options" in query:
        for _ in query["options"]:
            question = question + f"{_} {query['options'][_]}\n"
    if "instructions" in query:
        question = question + query["instructions"]
    return question

with open("visual_basic.json","r",encode="utf-8") as f:
    queries = json.load(f)

for idx in range(queries):
    question = build_question(queries[idx])
    figure_path = [queries[idx]['figure_path']]
    visual_figure_path = queries[idx]['visual_figure_path']
    response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on 
    queries[idx]["response"] = reponse

with open("model_reponse.json","w",encode="utf-8") as f:
    json.dump(queries, f)
from checker import evaluate
evaluate("model_reponse.json", "path_to_save_the_result")

Or simply use after your answer is generated:

python -c "import checker; checker.evaluate(sys.argv[1], sys.argv[2])" PATH_TO_INPUT_FILE PATH_TO_INPUT_FILE 

LeaderBoard

Model Infographic Plain Δ Basic Metaphor Avg.
Baselines
Human 95.35* 96.28* 0.93 93.17* 88.69 90.93
Proprietary Models
OpenAI O4-mini 79.41 94.61 15.20 92.12 54.76 73.44
GPT-4o 66.09 81.77 15.68 81.77 47.19 64.48
Claude 3.5 Sonnet 65.67 83.11 17.44 90.36 55.33 72.85
Gemini 2.5 Pro Preview 83.31 93.88 10.07 90.01 60.42 75.22
Gemini 2.5 Flash Preview 71.91 84.66 12.75 82.02 56.28 69.15
Open-Source Models
Qwen2.5-VL-72B 62.06 78.47 16.41 77.34 54.64 65.99
Llama-4 Scout 67.41 84.84 17.43 81.76 51.89 66.83
Intern-VL3-78B 66.38 82.18 15.80 79.46 51.52 65.49
Intern-VL3-8B 56.82 73.50 16.68 74.26 49.57 61.92
Janus Pro 29.61 45.29 15.68 41.18 42.21 41.69
DeepSeek VL2 39.81 47.01 7.20 58.72 44.54 51.63
Phi-4 46.20 66.97 20.77 61.87 38.31 50.09
LLaVA OneVision Chat 78B 47.78 63.66 15.88 62.11 50.22 56.17
LLaVA OneVision Chat 7B 38.41 54.43 16.02 61.03 45.67 53.35
Pixtral 44.70 60.88 16.11 64.23 50.87 57.55
Ovis1.6-Gemma2-9B 50.56 64.52 13.98 60.96 34.42 47.69
ChartGemma 19.99 33.81 13.82 30.52 33.77 32.15
TinyChart 26.34 44.73 18.39 14.72 9.03 11.88
ChartInstruct-LLama2 20.55 27.91 7.36 33.86 33.12 33.49

License

Our original data contributions (all data except the charts) are distributed under the CC BY-SA 4.0 license. Our code is licensed under Apache 2.0 license. The copyright of the charts belong to the original authors.

Cite

If you use our work and are inspired by our work, please consider cite us (available soon):

@misc{lin2025infochartqabenchmarkmultimodalquestion,
      title={InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts}, 
      author={Minzhi Lin and Tianchi Xie and Mengchen Liu and Yilin Ye and Changjian Chen and Shixia Liu},
      year={2025},
      eprint={2505.19028},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.19028}, 
}