metadata
dataset_info:
features:
- name: question_id
dtype: string
- name: qtype
dtype: string
- name: figure_path
dtype: image
- name: visual_figure_path
list: image
- name: question
dtype: string
- name: answer
dtype: string
- name: instructions
dtype: string
- name: prompt
dtype: string
- name: options
list: string
splits:
- name: info
num_bytes: 9389294399
num_examples: 55091
- name: plain
num_bytes: 15950918129
num_examples: 55091
- name: visual_metaphor
num_bytes: 144053150
num_examples: 450
- name: visual_basic
num_bytes: 1254942699.466
num_examples: 7297
download_size: 20376840742
dataset_size: 26739208377.466
configs:
- config_name: default
data_files:
- split: info
path: data/info-*
- split: plain
path: data/plain-*
- split: visual_metaphor
path: data/visual_metaphor-*
- split: visual_basic
path: data/visual_basic-*
InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts
Dataset
You can find our dataset on huggingface: 🤗InfoChartQA Dataset
Usage
Each question entry is arranged as:
--question_id: int
--qtype: int
--figure_path: image
--visual_figure_path: list of image
--question: str
--answer: str
--instructions: str
--prompt: str
--options: list of dict ("A/B/C/D":"option_content")
Each question is built as:
image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any)
text_input: prompt (if any) + question + options (if any) + instructions (if any)
Evaluate
You should store and evaluate model's response as:
# Example code for evaluate
def build_question(query):#to build the question
question = ""
if "prompt" in query:
question = question + f"{query["prompt"]}\n"
question = question + f"{query["question"]}\n"
if "options" in query:
for _ in query["options"]:
question = question + f"{_} {query['options'][_]}\n"
if "instructions" in query:
question = question + query["instructions"]
return question
with open("visual_basic.json","r",encode="utf-8") as f:
queries = json.load(f)
for idx in range(queries):
question = build_question(queries[idx])
figure_path = [queries[idx]['figure_path']]
visual_figure_path = queries[idx]['visual_figure_path']
response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on
queries[idx]["response"] = reponse
with open("model_reponse.json","w",encode="utf-8") as f:
json.dump(queries, f)
from checker import evaluate
evaluate("model_reponse.json", "path_to_save_the_result")
Or simply use after your answer is generated:
python -c "import checker; checker.evaluate(sys.argv[1], sys.argv[2])" PATH_TO_INPUT_FILE PATH_TO_INPUT_FILE
LeaderBoard
Model | Infographic | Plain | Δ | Basic | Metaphor | Avg. |
---|---|---|---|---|---|---|
Baselines | ||||||
Human | 95.35* | 96.28* | 0.93 | 93.17* | 88.69 | 90.93 |
Proprietary Models | ||||||
OpenAI O4-mini | 79.41 | 94.61 | 15.20 | 92.12 | 54.76 | 73.44 |
GPT-4o | 66.09 | 81.77 | 15.68 | 81.77 | 47.19 | 64.48 |
Claude 3.5 Sonnet | 65.67 | 83.11 | 17.44 | 90.36 | 55.33 | 72.85 |
Gemini 2.5 Pro Preview | 83.31 | 93.88 | 10.07 | 90.01 | 60.42 | 75.22 |
Gemini 2.5 Flash Preview | 71.91 | 84.66 | 12.75 | 82.02 | 56.28 | 69.15 |
Open-Source Models | ||||||
Qwen2.5-VL-72B | 62.06 | 78.47 | 16.41 | 77.34 | 54.64 | 65.99 |
Llama-4 Scout | 67.41 | 84.84 | 17.43 | 81.76 | 51.89 | 66.83 |
Intern-VL3-78B | 66.38 | 82.18 | 15.80 | 79.46 | 51.52 | 65.49 |
Intern-VL3-8B | 56.82 | 73.50 | 16.68 | 74.26 | 49.57 | 61.92 |
Janus Pro | 29.61 | 45.29 | 15.68 | 41.18 | 42.21 | 41.69 |
DeepSeek VL2 | 39.81 | 47.01 | 7.20 | 58.72 | 44.54 | 51.63 |
Phi-4 | 46.20 | 66.97 | 20.77 | 61.87 | 38.31 | 50.09 |
LLaVA OneVision Chat 78B | 47.78 | 63.66 | 15.88 | 62.11 | 50.22 | 56.17 |
LLaVA OneVision Chat 7B | 38.41 | 54.43 | 16.02 | 61.03 | 45.67 | 53.35 |
Pixtral | 44.70 | 60.88 | 16.11 | 64.23 | 50.87 | 57.55 |
Ovis1.6-Gemma2-9B | 50.56 | 64.52 | 13.98 | 60.96 | 34.42 | 47.69 |
ChartGemma | 19.99 | 33.81 | 13.82 | 30.52 | 33.77 | 32.15 |
TinyChart | 26.34 | 44.73 | 18.39 | 14.72 | 9.03 | 11.88 |
ChartInstruct-LLama2 | 20.55 | 27.91 | 7.36 | 33.86 | 33.12 | 33.49 |
License
Our original data contributions (all data except the charts) are distributed under the CC BY-SA 4.0 license. Our code is licensed under Apache 2.0 license. The copyright of the charts belong to the original authors.
Cite
If you use our work and are inspired by our work, please consider cite us (available soon):
@misc{lin2025infochartqabenchmarkmultimodalquestion,
title={InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts},
author={Minzhi Lin and Tianchi Xie and Mengchen Liu and Yilin Ye and Changjian Chen and Shixia Liu},
year={2025},
eprint={2505.19028},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.19028},
}