File size: 6,163 Bytes
4544530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
dataset_info:
  features:
  - name: question_id
    dtype: string
  - name: qtype
    dtype: string
  - name: figure_path
    dtype: image
  - name: visual_figure_path
    list: image
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: instructions
    dtype: string
  - name: prompt
    dtype: string
  - name: options
    list: string
  splits:
  - name: info
    num_bytes: 9389294399.0
    num_examples: 55091
  - name: plain
    num_bytes: 15950918129.0
    num_examples: 55091
  - name: visual_metaphor
    num_bytes: 144053150.0
    num_examples: 450
  - name: visual_basic
    num_bytes: 1254942699.466
    num_examples: 7297
  download_size: 20376840742
  dataset_size: 26739208377.466
configs:
- config_name: default
  data_files:
  - split: info
    path: data/info-*
  - split: plain
    path: data/plain-*
  - split: visual_metaphor
    path: data/visual_metaphor-*
  - split: visual_basic
    path: data/visual_basic-*
---



# InfoChartQA:  Benchmark for Multimodal Question Answering on Infographic Charts



![xbhs3](teaser.jpg)🤗[Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)

# Dataset 

You can find our dataset on huggingface: 🤗[InfoChartQA Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)

# Usage

Each question entry is arranged as:

```
--question_id: int
--qtype: int
--figure_path: image
--visual_figure_path: list of image
--question: str
--answer: str
--instructions: str
--prompt: str
--options: list of dict ("A/B/C/D":"option_content")
```

Each question is built as:

```
image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any)
text_input: prompt (if any) + question + options (if any) + instructions (if any)
```

# Evaluate

You should store and evaluate model's response as:

```python
# Example code for evaluate
def build_question(query):#to build the question
    question = ""
    if "prompt" in query:
    	question = question + f"{query["prompt"]}\n"
    question = question + f"{query["question"]}\n"
    if "options" in query:
        for _ in query["options"]:
            question = question + f"{_} {query['options'][_]}\n"
	if "instructions" in query:
    	question = question + query["instructions"]
    return question

with open("visual_basic.json","r",encode="utf-8") as f:
	queries = json.load(f)

for idx in range(queries):
    question = build_question(queries[idx])
    figure_path = [queries[idx]['figure_path']]
    visual_figure_path = queries[idx]['visual_figure_path']
    response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on 
    queries[idx]["response"] = reponse

with open("model_reponse.json","w",encode="utf-8") as f:
	json.dump(queries, f)
from checker import evaluate
evaluate("model_reponse.json", "path_to_save_the_result")
```

Or simply use after your answer is generated:

```python
python -c "import checker; checker.evaluate(sys.argv[1], sys.argv[2])" PATH_TO_INPUT_FILE PATH_TO_INPUT_FILE 
```

# LeaderBoard

| Model                    | Infographic | Plain   | Δ     | Basic   | Metaphor | Avg.  |
| ------------------------ | ----------- | ------- | ----- | ------- | -------- | ----- |
| **Baselines**            |             |         |       |         |          |       |
| Human                    | 95.35\*     | 96.28\* | 0.93  | 93.17\* | 88.69    | 90.93 |
| **Proprietary Models**   |             |         |       |         |          |       |
| OpenAI O4-mini           | 79.41       | 94.61   | 15.20 | 92.12   | 54.76    | 73.44 |
| GPT-4o                   | 66.09       | 81.77   | 15.68 | 81.77   | 47.19    | 64.48 |
| Claude 3.5 Sonnet        | 65.67       | 83.11   | 17.44 | 90.36   | 55.33    | 72.85 |
| Gemini 2.5 Pro Preview   | 83.31       | 93.88   | 10.07 | 90.01   | 60.42    | 75.22 |
| Gemini 2.5 Flash Preview | 71.91       | 84.66   | 12.75 | 82.02   | 56.28    | 69.15 |
| **Open-Source Models**   |             |         |       |         |          |       |
| Qwen2.5-VL-72B           | 62.06       | 78.47   | 16.41 | 77.34   | 54.64    | 65.99 |
| Llama-4 Scout            | 67.41       | 84.84   | 17.43 | 81.76   | 51.89    | 66.83 |
| Intern-VL3-78B           | 66.38       | 82.18   | 15.80 | 79.46   | 51.52    | 65.49 |
| Intern-VL3-8B            | 56.82       | 73.50   | 16.68 | 74.26   | 49.57    | 61.92 |
| Janus Pro                | 29.61       | 45.29   | 15.68 | 41.18   | 42.21    | 41.69 |
| DeepSeek VL2             | 39.81       | 47.01   | 7.20  | 58.72   | 44.54    | 51.63 |
| Phi-4                    | 46.20       | 66.97   | 20.77 | 61.87   | 38.31    | 50.09 |
| LLaVA OneVision Chat 78B | 47.78       | 63.66   | 15.88 | 62.11   | 50.22    | 56.17 |
| LLaVA OneVision Chat 7B  | 38.41       | 54.43   | 16.02 | 61.03   | 45.67    | 53.35 |
| Pixtral                  | 44.70       | 60.88   | 16.11 | 64.23   | 50.87    | 57.55 |
| Ovis1.6-Gemma2-9B        | 50.56       | 64.52   | 13.98 | 60.96   | 34.42    | 47.69 |
| ChartGemma               | 19.99       | 33.81   | 13.82 | 30.52   | 33.77    | 32.15 |
| TinyChart                | 26.34       | 44.73   | 18.39 | 14.72   | 9.03     | 11.88 |
| ChartInstruct-LLama2     | 20.55       | 27.91   | 7.36  | 33.86   | 33.12    | 33.49 |

 # License

Our original data contributions (all data except the charts) are distributed under the [CC BY-SA 4.0](https://github.com/princeton-nlp/CharXiv/blob/main/data/LICENSE) license. Our code is licensed under [Apache 2.0](https://github.com/princeton-nlp/CharXiv/blob/main/LICENSE) license. The copyright of the charts belong to the original authors.

##  Cite

If you use our work and are inspired by our work, please consider cite us (available soon):

```
@misc{lin2025infochartqabenchmarkmultimodalquestion,
      title={InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts}, 
      author={Minzhi Lin and Tianchi Xie and Mengchen Liu and Yilin Ye and Changjian Chen and Shixia Liu},
      year={2025},
      eprint={2505.19028},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.19028}, 
}
```