Upload 2 files
Browse files- README2.md +172 -0
- teaser.jpg +3 -0
README2.md
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: question_id
|
5 |
+
dtype: string
|
6 |
+
- name: qtype
|
7 |
+
dtype: string
|
8 |
+
- name: figure_path
|
9 |
+
dtype: image
|
10 |
+
- name: visual_figure_path
|
11 |
+
list: image
|
12 |
+
- name: question
|
13 |
+
dtype: string
|
14 |
+
- name: answer
|
15 |
+
dtype: string
|
16 |
+
- name: instructions
|
17 |
+
dtype: string
|
18 |
+
- name: prompt
|
19 |
+
dtype: string
|
20 |
+
- name: options
|
21 |
+
list: string
|
22 |
+
splits:
|
23 |
+
- name: info
|
24 |
+
num_bytes: 9389294399.0
|
25 |
+
num_examples: 55091
|
26 |
+
- name: plain
|
27 |
+
num_bytes: 15950918129.0
|
28 |
+
num_examples: 55091
|
29 |
+
- name: visual_metaphor
|
30 |
+
num_bytes: 144053150.0
|
31 |
+
num_examples: 450
|
32 |
+
- name: visual_basic
|
33 |
+
num_bytes: 1254942699.466
|
34 |
+
num_examples: 7297
|
35 |
+
download_size: 20376840742
|
36 |
+
dataset_size: 26739208377.466
|
37 |
+
configs:
|
38 |
+
- config_name: default
|
39 |
+
data_files:
|
40 |
+
- split: info
|
41 |
+
path: data/info-*
|
42 |
+
- split: plain
|
43 |
+
path: data/plain-*
|
44 |
+
- split: visual_metaphor
|
45 |
+
path: data/visual_metaphor-*
|
46 |
+
- split: visual_basic
|
47 |
+
path: data/visual_basic-*
|
48 |
+
---
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
# InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
🤗[Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
57 |
+
|
58 |
+
# Dataset
|
59 |
+
|
60 |
+
You can find our dataset on huggingface: 🤗[InfoChartQA Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
61 |
+
|
62 |
+
# Usage
|
63 |
+
|
64 |
+
Each question entry is arranged as:
|
65 |
+
|
66 |
+
```
|
67 |
+
--question_id: int
|
68 |
+
--qtype: int
|
69 |
+
--figure_path: image
|
70 |
+
--visual_figure_path: list of image
|
71 |
+
--question: str
|
72 |
+
--answer: str
|
73 |
+
--instructions: str
|
74 |
+
--prompt: str
|
75 |
+
--options: list of dict ("A/B/C/D":"option_content")
|
76 |
+
```
|
77 |
+
|
78 |
+
Each question is built as:
|
79 |
+
|
80 |
+
```
|
81 |
+
image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any)
|
82 |
+
text_input: prompt (if any) + question + options (if any) + instructions (if any)
|
83 |
+
```
|
84 |
+
|
85 |
+
# Evaluate
|
86 |
+
|
87 |
+
You should store and evaluate model's response as:
|
88 |
+
|
89 |
+
```python
|
90 |
+
# Example code for evaluate
|
91 |
+
def build_question(query):#to build the question
|
92 |
+
question = ""
|
93 |
+
if "prompt" in query:
|
94 |
+
question = question + f"{query["prompt"]}\n"
|
95 |
+
question = question + f"{query["question"]}\n"
|
96 |
+
if "options" in query:
|
97 |
+
for _ in query["options"]:
|
98 |
+
question = question + f"{_} {query['options'][_]}\n"
|
99 |
+
if "instructions" in query:
|
100 |
+
question = question + query["instructions"]
|
101 |
+
return question
|
102 |
+
|
103 |
+
with open("visual_basic.json","r",encode="utf-8") as f:
|
104 |
+
queries = json.load(f)
|
105 |
+
|
106 |
+
for idx in range(queries):
|
107 |
+
question = build_question(queries[idx])
|
108 |
+
figure_path = [queries[idx]['figure_path']]
|
109 |
+
visual_figure_path = queries[idx]['visual_figure_path']
|
110 |
+
response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on
|
111 |
+
queries[idx]["response"] = reponse
|
112 |
+
|
113 |
+
with open("model_reponse.json","w",encode="utf-8") as f:
|
114 |
+
json.dump(queries, f)
|
115 |
+
from checker import evaluate
|
116 |
+
evaluate("model_reponse.json", "path_to_save_the_result")
|
117 |
+
```
|
118 |
+
|
119 |
+
Or simply use after your answer is generated:
|
120 |
+
|
121 |
+
```python
|
122 |
+
python -c "import checker; checker.evaluate(sys.argv[1], sys.argv[2])" PATH_TO_INPUT_FILE PATH_TO_INPUT_FILE
|
123 |
+
```
|
124 |
+
|
125 |
+
# LeaderBoard
|
126 |
+
|
127 |
+
| Model | Infographic | Plain | Δ | Basic | Metaphor | Avg. |
|
128 |
+
| ------------------------ | ----------- | ------- | ----- | ------- | -------- | ----- |
|
129 |
+
| **Baselines** | | | | | | |
|
130 |
+
| Human | 95.35\* | 96.28\* | 0.93 | 93.17\* | 88.69 | 90.93 |
|
131 |
+
| **Proprietary Models** | | | | | | |
|
132 |
+
| OpenAI O4-mini | 79.41 | 94.61 | 15.20 | 92.12 | 54.76 | 73.44 |
|
133 |
+
| GPT-4o | 66.09 | 81.77 | 15.68 | 81.77 | 47.19 | 64.48 |
|
134 |
+
| Claude 3.5 Sonnet | 65.67 | 83.11 | 17.44 | 90.36 | 55.33 | 72.85 |
|
135 |
+
| Gemini 2.5 Pro Preview | 83.31 | 93.88 | 10.07 | 90.01 | 60.42 | 75.22 |
|
136 |
+
| Gemini 2.5 Flash Preview | 71.91 | 84.66 | 12.75 | 82.02 | 56.28 | 69.15 |
|
137 |
+
| **Open-Source Models** | | | | | | |
|
138 |
+
| Qwen2.5-VL-72B | 62.06 | 78.47 | 16.41 | 77.34 | 54.64 | 65.99 |
|
139 |
+
| Llama-4 Scout | 67.41 | 84.84 | 17.43 | 81.76 | 51.89 | 66.83 |
|
140 |
+
| Intern-VL3-78B | 66.38 | 82.18 | 15.80 | 79.46 | 51.52 | 65.49 |
|
141 |
+
| Intern-VL3-8B | 56.82 | 73.50 | 16.68 | 74.26 | 49.57 | 61.92 |
|
142 |
+
| Janus Pro | 29.61 | 45.29 | 15.68 | 41.18 | 42.21 | 41.69 |
|
143 |
+
| DeepSeek VL2 | 39.81 | 47.01 | 7.20 | 58.72 | 44.54 | 51.63 |
|
144 |
+
| Phi-4 | 46.20 | 66.97 | 20.77 | 61.87 | 38.31 | 50.09 |
|
145 |
+
| LLaVA OneVision Chat 78B | 47.78 | 63.66 | 15.88 | 62.11 | 50.22 | 56.17 |
|
146 |
+
| LLaVA OneVision Chat 7B | 38.41 | 54.43 | 16.02 | 61.03 | 45.67 | 53.35 |
|
147 |
+
| Pixtral | 44.70 | 60.88 | 16.11 | 64.23 | 50.87 | 57.55 |
|
148 |
+
| Ovis1.6-Gemma2-9B | 50.56 | 64.52 | 13.98 | 60.96 | 34.42 | 47.69 |
|
149 |
+
| ChartGemma | 19.99 | 33.81 | 13.82 | 30.52 | 33.77 | 32.15 |
|
150 |
+
| TinyChart | 26.34 | 44.73 | 18.39 | 14.72 | 9.03 | 11.88 |
|
151 |
+
| ChartInstruct-LLama2 | 20.55 | 27.91 | 7.36 | 33.86 | 33.12 | 33.49 |
|
152 |
+
|
153 |
+
# License
|
154 |
+
|
155 |
+
Our original data contributions (all data except the charts) are distributed under the [CC BY-SA 4.0](https://github.com/princeton-nlp/CharXiv/blob/main/data/LICENSE) license. Our code is licensed under [Apache 2.0](https://github.com/princeton-nlp/CharXiv/blob/main/LICENSE) license. The copyright of the charts belong to the original authors.
|
156 |
+
|
157 |
+
## Cite
|
158 |
+
|
159 |
+
If you use our work and are inspired by our work, please consider cite us (available soon):
|
160 |
+
|
161 |
+
```
|
162 |
+
@misc{lin2025infochartqabenchmarkmultimodalquestion,
|
163 |
+
title={InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts},
|
164 |
+
author={Minzhi Lin and Tianchi Xie and Mengchen Liu and Yilin Ye and Changjian Chen and Shixia Liu},
|
165 |
+
year={2025},
|
166 |
+
eprint={2505.19028},
|
167 |
+
archivePrefix={arXiv},
|
168 |
+
primaryClass={cs.CV},
|
169 |
+
url={https://arxiv.org/abs/2505.19028},
|
170 |
+
}
|
171 |
+
```
|
172 |
+
|
teaser.jpg
ADDED
![]() |
Git LFS Details
|