license: openrail++
base_model: terminusresearch/pixart-900m-1024-ft-v0.6
tags:
- pixart_sigma
- pixart_sigma-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- controlnet
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
widget:
- text: A photo-realistic image of a cat
parameters:
negative_prompt: ugly, cropped, blurry, low-quality, mediocre average
output:
url: ./assets/image_0_0.png
pixart-controlnet-lora-test
This is a ControlNet PEFT LoRA derived from terminusresearch/pixart-900m-1024-ft-v0.6.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
4.0
- CFG Rescale:
0.0
- Steps:
16
- Sampler:
ddim
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- ugly, cropped, blurry, low-quality, mediocre average
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 224
Training steps: 450
Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 500
Max grad value: 0.01
Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
Gradient checkpointing: False
Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing', 'controlnet_enabled'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
no_change
Caption dropout probability: 0.0%
LoRA Rank: 64
LoRA Alpha: 64.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
antelope-data-1024
- Repeats: 0
- Total number of images: ~6
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import PixArtSigmaPipeline, PixArtSigmaControlNetPipeline
# if you're not in the SimpleTuner environment, this import will fail.
from helpers.models.pixart.controlnet import PixArtSigmaControlNetAdapterModel
# Load base model
base_model_id = "terminusresearch/pixart-900m-1024-ft-v0.6"
controlnet_id = "bghira/pixart-controlnet-lora-test"
# Load ControlNet adapter
controlnet = PixArtSigmaControlNetAdapterModel.from_pretrained(
f"{controlnet_id}/controlnet"
)
# Create pipeline
pipeline = PixArtSigmaControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipeline.to('cuda' if torch.cuda.is_available() else 'cpu')
# Load your control image
from PIL import Image
control_image = Image.open("path/to/control/image.png")
# Generate
prompt = "A photo-realistic image of a cat"
image = pipeline(
prompt=prompt,
image=control_image,
num_inference_steps=16,
guidance_scale=4.0,
generator=torch.Generator(device='cuda').manual_seed(42),
controlnet_conditioning_scale=1.0,
).images[0]
image.save("output.png")