File size: 3,319 Bytes
546efed b87a365 546efed b87a365 546efed 613d88f 546efed 3da637a 546efed 3da637a 546efed 3da637a 546efed 3da637a 546efed 3da637a 546efed 3da637a 546efed 3da637a 546efed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: openrail++
base_model: "terminusresearch/pixart-900m-1024-ft-v0.6"
tags:
- pixart_sigma
- pixart_sigma-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- controlnet
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_0_0.png
---
# pixart-controlnet-lora-test
This is a ControlNet PEFT LoRA derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `4.0`
- CFG Rescale: `0.0`
- Steps: `16`
- Sampler: `ddim`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 224
- Training steps: 450
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 500
- Max grad value: 0.01
- Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Gradient checkpointing: False
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing', 'controlnet_enabled'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision: `no_change`
- Caption dropout probability: 0.0%
- LoRA Rank: 64
- LoRA Alpha: 64.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### antelope-data-1024
- Repeats: 0
- Total number of images: ~6
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import PixArtSigmaPipeline, PixArtSigmaControlNetPipeline
# if you're not in the SimpleTuner environment, this import will fail.
from helpers.models.pixart.controlnet import PixArtSigmaControlNetAdapterModel
# Load base model
base_model_id = "terminusresearch/pixart-900m-1024-ft-v0.6"
controlnet_id = "bghira/pixart-controlnet-lora-test"
# Load ControlNet adapter
controlnet = PixArtSigmaControlNetAdapterModel.from_pretrained(
f"{controlnet_id}/controlnet"
)
# Create pipeline
pipeline = PixArtSigmaControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipeline.to('cuda' if torch.cuda.is_available() else 'cpu')
# Load your control image
from PIL import Image
control_image = Image.open("path/to/control/image.png")
# Generate
prompt = "A photo-realistic image of a cat"
image = pipeline(
prompt=prompt,
image=control_image,
num_inference_steps=16,
guidance_scale=4.0,
generator=torch.Generator(device='cuda').manual_seed(42),
controlnet_conditioning_scale=1.0,
).images[0]
image.save("output.png")
|