File size: 3,319 Bytes
546efed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87a365
 
 
 
 
 
546efed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87a365
546efed
 
 
 
 
 
 
 
 
 
613d88f
 
546efed
 
 
 
 
 
 
 
 
3da637a
546efed
 
 
 
 
 
3da637a
 
546efed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3da637a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546efed
3da637a
546efed
3da637a
546efed
 
3da637a
 
546efed
 
3da637a
546efed
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: openrail++
base_model: "terminusresearch/pixart-900m-1024-ft-v0.6"
tags:
  - pixart_sigma
  - pixart_sigma-diffusers
  - text-to-image
  - image-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - controlnet
  - template:sd-lora
  - standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'A photo-realistic image of a cat'
  parameters:
    negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
  output:
    url: ./assets/image_0_0.png
---

# pixart-controlnet-lora-test

This is a ControlNet PEFT LoRA derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6).

The main validation prompt used during training was:
```
A photo-realistic image of a cat
```


## Validation settings
- CFG: `4.0`
- CFG Rescale: `0.0`
- Steps: `16`
- Sampler: `ddim`
- Seed: `42`
- Resolution: `1024x1024`


Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 224
- Training steps: 450
- Learning rate: 0.0001
  - Learning rate schedule: constant
  - Warmup steps: 500
- Max grad value: 0.01
- Effective batch size: 3
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 3
- Gradient checkpointing: False
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing', 'controlnet_enabled'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision: `no_change`
- Caption dropout probability: 0.0%


- LoRA Rank: 64
- LoRA Alpha: 64.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
    

## Datasets

### antelope-data-1024
- Repeats: 0
- Total number of images: ~6
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import PixArtSigmaPipeline, PixArtSigmaControlNetPipeline
# if you're not in the SimpleTuner environment, this import will fail.
from helpers.models.pixart.controlnet import PixArtSigmaControlNetAdapterModel

# Load base model
base_model_id = "terminusresearch/pixart-900m-1024-ft-v0.6"
controlnet_id = "bghira/pixart-controlnet-lora-test"

# Load ControlNet adapter
controlnet = PixArtSigmaControlNetAdapterModel.from_pretrained(
    f"{controlnet_id}/controlnet"
)

# Create pipeline
pipeline = PixArtSigmaControlNetPipeline.from_pretrained(
    base_model_id,
    controlnet=controlnet,
    torch_dtype=torch.bfloat16
)
pipeline.to('cuda' if torch.cuda.is_available() else 'cpu')

# Load your control image
from PIL import Image
control_image = Image.open("path/to/control/image.png")

# Generate
prompt = "A photo-realistic image of a cat"
image = pipeline(
    prompt=prompt,
    image=control_image,
    num_inference_steps=16,
    guidance_scale=4.0,
    generator=torch.Generator(device='cuda').manual_seed(42),
    controlnet_conditioning_scale=1.0,
).images[0]

image.save("output.png")