--- license: openrail++ base_model: "terminusresearch/pixart-900m-1024-ft-v0.6" tags: - pixart_sigma - pixart_sigma-diffusers - text-to-image - image-to-image - diffusers - simpletuner - not-for-all-audiences - lora - controlnet - template:sd-lora - standard pipeline_tag: text-to-image inference: true widget: - text: 'A photo-realistic image of a cat' parameters: negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average' output: url: ./assets/image_0_0.png --- # pixart-controlnet-lora-test This is a ControlNet PEFT LoRA derived from [terminusresearch/pixart-900m-1024-ft-v0.6](https://huggingface.co/terminusresearch/pixart-900m-1024-ft-v0.6). The main validation prompt used during training was: ``` A photo-realistic image of a cat ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.0` - Steps: `16` - Sampler: `ddim` - Seed: `42` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 224 - Training steps: 450 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 500 - Max grad value: 0.01 - Effective batch size: 3 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 3 - Gradient checkpointing: False - Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing', 'controlnet_enabled']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Base model precision: `no_change` - Caption dropout probability: 0.0% - LoRA Rank: 64 - LoRA Alpha: 64.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### antelope-data-1024 - Repeats: 0 - Total number of images: ~6 - Total number of aspect buckets: 1 - Resolution: 1.048576 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import PixArtSigmaPipeline, PixArtSigmaControlNetPipeline # if you're not in the SimpleTuner environment, this import will fail. from helpers.models.pixart.controlnet import PixArtSigmaControlNetAdapterModel # Load base model base_model_id = "terminusresearch/pixart-900m-1024-ft-v0.6" controlnet_id = "bghira/pixart-controlnet-lora-test" # Load ControlNet adapter controlnet = PixArtSigmaControlNetAdapterModel.from_pretrained( f"{controlnet_id}/controlnet" ) # Create pipeline pipeline = PixArtSigmaControlNetPipeline.from_pretrained( base_model_id, controlnet=controlnet, torch_dtype=torch.bfloat16 ) pipeline.to('cuda' if torch.cuda.is_available() else 'cpu') # Load your control image from PIL import Image control_image = Image.open("path/to/control/image.png") # Generate prompt = "A photo-realistic image of a cat" image = pipeline( prompt=prompt, image=control_image, num_inference_steps=16, guidance_scale=4.0, generator=torch.Generator(device='cuda').manual_seed(42), controlnet_conditioning_scale=1.0, ).images[0] image.save("output.png")