metadata
library_name: transformers
language:
- en
- zh
license: cc-by-4.0
base_model: Helsinki-NLP/opus-mt-zh-en
tags:
- generated_from_trainer
model-index:
- name: zhtw-en
results: []
datasets:
- zetavg/coct-en-zh-tw-translations-twp-300k
pipeline_tag: translation
zhtw-en
English
This model translates Traditional Chinese sentences into English, with a focus on understanding Taiwanese-style Traditional Chinese and producing more accurate English translations.This model is a fine-tuned version of Helsinki-NLP/opus-mt-zh-en on the zetavg/coct-en-zh-tw-translations-twp-300k dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4350
- Num Input Tokens Seen: 55653732
Intended Uses & Limitations
Intended Use Cases
- Translating single sentences from Chinese to English.
- Applications requiring understanding of the Chinese language as spoken in Taiwan.
Limitations
- Designed for single-sentence translation so will not perform well on longer texts without pre-processing
- Sometimes hallucinates or omits information, especially with short or long inputs
- Further fine-tuning will address this
Training and Evaluation Data
This model was trained and evaluated on the Corpus of Contemporary Taiwanese Mandarin (COCT) translations dataset.
- Training Data: 80% of the COCT dataset
- Validation Data: 20% of the COCT dataset
Chinese
該模型旨在將繁體中文翻譯成英文,重點是理解台灣風格的繁體中文並產生更準確的英文翻譯。模型基於 Helsinki-NLP/opus-mt-zh-en 並在 zetavg/coct-en-zh-tw-translations-twp-300k 資料集上進行微調。
在評估集上,模型取得了以下結果:
- 損失:2.4350
- 處理的輸入標記數量:55,653,732
預期用途與限制
預期用途
- 將單一中文句子翻譯為英文。
- 適用於需要理解台灣中文的應用程式。
限制
- 本模型專為單句翻譯設計,因此在處理較長文本時可能表現不佳,若未經預處理。
- 在某些情況下,模型可能會產生幻覺或遺漏信息,特別是在輸入過短或過長的情況下。
- 進一步的微調將有助於改善這些問題。
訓練與評估數據
該模型使用 當代台灣普通話語料庫 (COCT) 資料集進行訓練和評估。
- 訓練資料:COCT 資料集的 80%
- 驗證資料:COCT 資料集的 20%
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- Learning Rate: 5e-05
- Train Batch Size: 8
- Eval Batch Size: 8
- Seed: 42
- Optimizer: adamw_torch with betas=(0.9,0.999) and epsilon=1e-08
- LR Scheduler Type: linear
- Number of Epochs: 3.0
Training Results
Click here to see the training and validation losses
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
3.2254 | 0.0804 | 2500 | 2.9105 | 1493088 |
3.0946 | 0.1608 | 5000 | 2.8305 | 2990968 |
3.0473 | 0.2412 | 7500 | 2.7737 | 4477792 |
2.9633 | 0.3216 | 10000 | 2.7307 | 5967560 |
2.9355 | 0.4020 | 12500 | 2.6843 | 7463192 |
2.9076 | 0.4824 | 15000 | 2.6587 | 8950264 |
2.8714 | 0.5628 | 17500 | 2.6304 | 10443344 |
2.8716 | 0.6433 | 20000 | 2.6025 | 11951096 |
2.7989 | 0.7237 | 22500 | 2.5822 | 13432464 |
2.7941 | 0.8041 | 25000 | 2.5630 | 14919424 |
2.7692 | 0.8845 | 27500 | 2.5497 | 16415080 |
2.757 | 0.9649 | 30000 | 2.5388 | 17897832 |
2.7024 | 1.0453 | 32500 | 2.6006 | 19384812 |
2.7248 | 1.1257 | 35000 | 2.6042 | 20876844 |
2.6764 | 1.2061 | 37500 | 2.5923 | 22372340 |
2.6854 | 1.2865 | 40000 | 2.5793 | 23866100 |
2.683 | 1.3669 | 42500 | 2.5722 | 25348084 |
2.6871 | 1.4473 | 45000 | 2.5538 | 26854100 |
2.6551 | 1.5277 | 47500 | 2.5443 | 28332612 |
2.661 | 1.6081 | 50000 | 2.5278 | 29822156 |
2.6497 | 1.6885 | 52500 | 2.5266 | 31319476 |
2.6281 | 1.7689 | 55000 | 2.5116 | 32813220 |
2.6067 | 1.8494 | 57500 | 2.5047 | 34298052 |
2.6112 | 1.9298 | 60000 | 2.4935 | 35783604 |
2.5207 | 2.0102 | 62500 | 2.4946 | 37281092 |
2.4799 | 2.0906 | 65000 | 2.4916 | 38768588 |
2.4727 | 2.1710 | 67500 | 2.4866 | 40252972 |
2.4719 | 2.2514 | 70000 | 2.4760 | 41746300 |
2.4738 | 2.3318 | 72500 | 2.4713 | 43241188 |
2.4629 | 2.4122 | 75000 | 2.4630 | 44730244 |
2.4524 | 2.4926 | 77500 | 2.4575 | 46231060 |
2.435 | 2.5730 | 80000 | 2.4553 | 47718964 |
2.4621 | 2.6534 | 82500 | 2.4475 | 49209724 |
2.4492 | 2.7338 | 85000 | 2.4440 | 50712980 |
2.4536 | 2.8142 | 87500 | 2.4394 | 52204380 |
2.4148 | 2.8946 | 90000 | 2.4360 | 53695620 |
2.4243 | 2.9750 | 92500 | 2.4350 | 55190020 |
Framework Versions
- Transformers 4.48.1
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0