agentlans commited on
Commit
ef409a2
·
verified ·
1 Parent(s): 106cd9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -3
README.md CHANGED
@@ -1,3 +1,146 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - en
5
+ - zh
6
+ license: cc-by-4.0
7
+ base_model: Helsinki-NLP/opus-mt-zh-en
8
+ tags:
9
+ - generated_from_trainer
10
+ model-index:
11
+ - name: zhtw-en
12
+ results: []
13
+ datasets:
14
+ - zetavg/coct-en-zh-tw-translations-twp-300k
15
+ pipeline_tag: translation
16
+ ---
17
+
18
+ # zhtw-en
19
+
20
+ <details>
21
+ <summary>English</summary>
22
+ This model translates Traditional Chinese sentences into English, with a focus on understanding Taiwanese-style Traditional Chinese and producing more accurate English translations.
23
+
24
+ This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on the [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
25
+
26
+ It achieves the following results on the evaluation set:
27
+ - Loss: 2.4350
28
+ - Num Input Tokens Seen: 55653732
29
+
30
+ ## Intended Uses & Limitations
31
+
32
+ ### Intended Use Cases
33
+
34
+ - Translating single sentences from Chinese to English.
35
+ - Applications requiring understanding of the Chinese language as spoken in Taiwan.
36
+
37
+ ### Limitations
38
+
39
+ - Designed for single-sentence translation so will not perform well on longer texts without pre-processing
40
+ - Sometimes hallucinates or omits information, especially with short or long inputs
41
+ - Further fine-tuning will address this
42
+
43
+ ## Training and Evaluation Data
44
+
45
+ This model was trained and evaluated on the [Corpus of Contemporary Taiwanese Mandarin (COCT) translations](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
46
+
47
+ - **Training Data:** 80% of the COCT dataset
48
+ - **Validation Data:** 20% of the COCT dataset
49
+ </details>
50
+
51
+ <details>
52
+ <summary>Chinese</summary>
53
+ 該模型旨在將繁體中文翻譯成英文,重點是理解台灣風格的繁體中文並產生更準確的英文翻譯。
54
+
55
+ 模型基於 [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) 並在 [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集上進行微調。
56
+
57
+ 在評估集上,模型取得了以下結果:
58
+ - **損失**:2.4350
59
+ - **處理的輸入標記數量**:55,653,732
60
+
61
+ ## 預期用途與限制
62
+
63
+ ### 預期用途
64
+ - 將單一中文句子翻譯為英文。
65
+ - 適用於需要理解台灣中文的應用程式。
66
+
67
+ ### 限制
68
+ - 本模型專為單句翻譯設計,因此在處理較長文本時可能表現不佳,若未經預處理。
69
+ - 在某些情況下,模型可能會產生幻覺或遺漏信息,特別是在輸入過短或過長的情況下。
70
+ - 進一步的微調將有助於改善這些問題。
71
+
72
+ ## 訓練與評估數據
73
+
74
+ 該模型使用 [當代台灣普通話語料庫 (COCT)](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集進行訓練和評估。
75
+
76
+ - **訓練資料**:COCT 資料集的 80%
77
+ - **驗證資料**:COCT 資料集的 20%
78
+ </details>
79
+
80
+ ## Training Procedure
81
+
82
+ ### Training Hyperparameters
83
+
84
+ The following hyperparameters were used during training:
85
+
86
+ - **Learning Rate:** 5e-05
87
+ - **Train Batch Size:** 8
88
+ - **Eval Batch Size:** 8
89
+ - **Seed:** 42
90
+ - **Optimizer:** adamw\_torch with betas=(0.9,0.999) and epsilon=1e-08
91
+ - **LR Scheduler Type:** linear
92
+ - **Number of Epochs:** 3.0
93
+
94
+ ### Training Results
95
+
96
+ <details>
97
+ <summary>Click here to see the training and validation losses</summary>
98
+
99
+ | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
100
+ |:-------------:|:------:|:-----:|:---------------:|:-----------------:|
101
+ | 3.2254 | 0.0804 | 2500 | 2.9105 | 1493088 |
102
+ | 3.0946 | 0.1608 | 5000 | 2.8305 | 2990968 |
103
+ | 3.0473 | 0.2412 | 7500 | 2.7737 | 4477792 |
104
+ | 2.9633 | 0.3216 | 10000 | 2.7307 | 5967560 |
105
+ | 2.9355 | 0.4020 | 12500 | 2.6843 | 7463192 |
106
+ | 2.9076 | 0.4824 | 15000 | 2.6587 | 8950264 |
107
+ | 2.8714 | 0.5628 | 17500 | 2.6304 | 10443344 |
108
+ | 2.8716 | 0.6433 | 20000 | 2.6025 | 11951096 |
109
+ | 2.7989 | 0.7237 | 22500 | 2.5822 | 13432464 |
110
+ | 2.7941 | 0.8041 | 25000 | 2.5630 | 14919424 |
111
+ | 2.7692 | 0.8845 | 27500 | 2.5497 | 16415080 |
112
+ | 2.757 | 0.9649 | 30000 | 2.5388 | 17897832 |
113
+ | 2.7024 | 1.0453 | 32500 | 2.6006 | 19384812 |
114
+ | 2.7248 | 1.1257 | 35000 | 2.6042 | 20876844 |
115
+ | 2.6764 | 1.2061 | 37500 | 2.5923 | 22372340 |
116
+ | 2.6854 | 1.2865 | 40000 | 2.5793 | 23866100 |
117
+ | 2.683 | 1.3669 | 42500 | 2.5722 | 25348084 |
118
+ | 2.6871 | 1.4473 | 45000 | 2.5538 | 26854100 |
119
+ | 2.6551 | 1.5277 | 47500 | 2.5443 | 28332612 |
120
+ | 2.661 | 1.6081 | 50000 | 2.5278 | 29822156 |
121
+ | 2.6497 | 1.6885 | 52500 | 2.5266 | 31319476 |
122
+ | 2.6281 | 1.7689 | 55000 | 2.5116 | 32813220 |
123
+ | 2.6067 | 1.8494 | 57500 | 2.5047 | 34298052 |
124
+ | 2.6112 | 1.9298 | 60000 | 2.4935 | 35783604 |
125
+ | 2.5207 | 2.0102 | 62500 | 2.4946 | 37281092 |
126
+ | 2.4799 | 2.0906 | 65000 | 2.4916 | 38768588 |
127
+ | 2.4727 | 2.1710 | 67500 | 2.4866 | 40252972 |
128
+ | 2.4719 | 2.2514 | 70000 | 2.4760 | 41746300 |
129
+ | 2.4738 | 2.3318 | 72500 | 2.4713 | 43241188 |
130
+ | 2.4629 | 2.4122 | 75000 | 2.4630 | 44730244 |
131
+ | 2.4524 | 2.4926 | 77500 | 2.4575 | 46231060 |
132
+ | 2.435 | 2.5730 | 80000 | 2.4553 | 47718964 |
133
+ | 2.4621 | 2.6534 | 82500 | 2.4475 | 49209724 |
134
+ | 2.4492 | 2.7338 | 85000 | 2.4440 | 50712980 |
135
+ | 2.4536 | 2.8142 | 87500 | 2.4394 | 52204380 |
136
+ | 2.4148 | 2.8946 | 90000 | 2.4360 | 53695620 |
137
+ | 2.4243 | 2.9750 | 92500 | 2.4350 | 55190020 |
138
+
139
+ </details>
140
+
141
+ ### Framework Versions
142
+
143
+ - Transformers 4.48.1
144
+ - Pytorch 2.3.0+cu121
145
+ - Datasets 3.2.0
146
+ - Tokenizers 0.21.0