Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,146 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
license: cc-by-4.0
|
7 |
+
base_model: Helsinki-NLP/opus-mt-zh-en
|
8 |
+
tags:
|
9 |
+
- generated_from_trainer
|
10 |
+
model-index:
|
11 |
+
- name: zhtw-en
|
12 |
+
results: []
|
13 |
+
datasets:
|
14 |
+
- zetavg/coct-en-zh-tw-translations-twp-300k
|
15 |
+
pipeline_tag: translation
|
16 |
+
---
|
17 |
+
|
18 |
+
# zhtw-en
|
19 |
+
|
20 |
+
<details>
|
21 |
+
<summary>English</summary>
|
22 |
+
This model translates Traditional Chinese sentences into English, with a focus on understanding Taiwanese-style Traditional Chinese and producing more accurate English translations.
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on the [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
|
25 |
+
|
26 |
+
It achieves the following results on the evaluation set:
|
27 |
+
- Loss: 2.4350
|
28 |
+
- Num Input Tokens Seen: 55653732
|
29 |
+
|
30 |
+
## Intended Uses & Limitations
|
31 |
+
|
32 |
+
### Intended Use Cases
|
33 |
+
|
34 |
+
- Translating single sentences from Chinese to English.
|
35 |
+
- Applications requiring understanding of the Chinese language as spoken in Taiwan.
|
36 |
+
|
37 |
+
### Limitations
|
38 |
+
|
39 |
+
- Designed for single-sentence translation so will not perform well on longer texts without pre-processing
|
40 |
+
- Sometimes hallucinates or omits information, especially with short or long inputs
|
41 |
+
- Further fine-tuning will address this
|
42 |
+
|
43 |
+
## Training and Evaluation Data
|
44 |
+
|
45 |
+
This model was trained and evaluated on the [Corpus of Contemporary Taiwanese Mandarin (COCT) translations](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
|
46 |
+
|
47 |
+
- **Training Data:** 80% of the COCT dataset
|
48 |
+
- **Validation Data:** 20% of the COCT dataset
|
49 |
+
</details>
|
50 |
+
|
51 |
+
<details>
|
52 |
+
<summary>Chinese</summary>
|
53 |
+
該模型旨在將繁體中文翻譯成英文,重點是理解台灣風格的繁體中文並產生更準確的英文翻譯。
|
54 |
+
|
55 |
+
模型基於 [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) 並在 [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集上進行微調。
|
56 |
+
|
57 |
+
在評估集上,模型取得了以下結果:
|
58 |
+
- **損失**:2.4350
|
59 |
+
- **處理的輸入標記數量**:55,653,732
|
60 |
+
|
61 |
+
## 預期用途與限制
|
62 |
+
|
63 |
+
### 預期用途
|
64 |
+
- 將單一中文句子翻譯為英文。
|
65 |
+
- 適用於需要理解台灣中文的應用程式。
|
66 |
+
|
67 |
+
### 限制
|
68 |
+
- 本模型專為單句翻譯設計,因此在處理較長文本時可能表現不佳,若未經預處理。
|
69 |
+
- 在某些情況下,模型可能會產生幻覺或遺漏信息,特別是在輸入過短或過長的情況下。
|
70 |
+
- 進一步的微調將有助於改善這些問題。
|
71 |
+
|
72 |
+
## 訓練與評估數據
|
73 |
+
|
74 |
+
該模型使用 [當代台灣普通話語料庫 (COCT)](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集進行訓練和評估。
|
75 |
+
|
76 |
+
- **訓練資料**:COCT 資料集的 80%
|
77 |
+
- **驗證資料**:COCT 資料集的 20%
|
78 |
+
</details>
|
79 |
+
|
80 |
+
## Training Procedure
|
81 |
+
|
82 |
+
### Training Hyperparameters
|
83 |
+
|
84 |
+
The following hyperparameters were used during training:
|
85 |
+
|
86 |
+
- **Learning Rate:** 5e-05
|
87 |
+
- **Train Batch Size:** 8
|
88 |
+
- **Eval Batch Size:** 8
|
89 |
+
- **Seed:** 42
|
90 |
+
- **Optimizer:** adamw\_torch with betas=(0.9,0.999) and epsilon=1e-08
|
91 |
+
- **LR Scheduler Type:** linear
|
92 |
+
- **Number of Epochs:** 3.0
|
93 |
+
|
94 |
+
### Training Results
|
95 |
+
|
96 |
+
<details>
|
97 |
+
<summary>Click here to see the training and validation losses</summary>
|
98 |
+
|
99 |
+
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|
100 |
+
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
|
101 |
+
| 3.2254 | 0.0804 | 2500 | 2.9105 | 1493088 |
|
102 |
+
| 3.0946 | 0.1608 | 5000 | 2.8305 | 2990968 |
|
103 |
+
| 3.0473 | 0.2412 | 7500 | 2.7737 | 4477792 |
|
104 |
+
| 2.9633 | 0.3216 | 10000 | 2.7307 | 5967560 |
|
105 |
+
| 2.9355 | 0.4020 | 12500 | 2.6843 | 7463192 |
|
106 |
+
| 2.9076 | 0.4824 | 15000 | 2.6587 | 8950264 |
|
107 |
+
| 2.8714 | 0.5628 | 17500 | 2.6304 | 10443344 |
|
108 |
+
| 2.8716 | 0.6433 | 20000 | 2.6025 | 11951096 |
|
109 |
+
| 2.7989 | 0.7237 | 22500 | 2.5822 | 13432464 |
|
110 |
+
| 2.7941 | 0.8041 | 25000 | 2.5630 | 14919424 |
|
111 |
+
| 2.7692 | 0.8845 | 27500 | 2.5497 | 16415080 |
|
112 |
+
| 2.757 | 0.9649 | 30000 | 2.5388 | 17897832 |
|
113 |
+
| 2.7024 | 1.0453 | 32500 | 2.6006 | 19384812 |
|
114 |
+
| 2.7248 | 1.1257 | 35000 | 2.6042 | 20876844 |
|
115 |
+
| 2.6764 | 1.2061 | 37500 | 2.5923 | 22372340 |
|
116 |
+
| 2.6854 | 1.2865 | 40000 | 2.5793 | 23866100 |
|
117 |
+
| 2.683 | 1.3669 | 42500 | 2.5722 | 25348084 |
|
118 |
+
| 2.6871 | 1.4473 | 45000 | 2.5538 | 26854100 |
|
119 |
+
| 2.6551 | 1.5277 | 47500 | 2.5443 | 28332612 |
|
120 |
+
| 2.661 | 1.6081 | 50000 | 2.5278 | 29822156 |
|
121 |
+
| 2.6497 | 1.6885 | 52500 | 2.5266 | 31319476 |
|
122 |
+
| 2.6281 | 1.7689 | 55000 | 2.5116 | 32813220 |
|
123 |
+
| 2.6067 | 1.8494 | 57500 | 2.5047 | 34298052 |
|
124 |
+
| 2.6112 | 1.9298 | 60000 | 2.4935 | 35783604 |
|
125 |
+
| 2.5207 | 2.0102 | 62500 | 2.4946 | 37281092 |
|
126 |
+
| 2.4799 | 2.0906 | 65000 | 2.4916 | 38768588 |
|
127 |
+
| 2.4727 | 2.1710 | 67500 | 2.4866 | 40252972 |
|
128 |
+
| 2.4719 | 2.2514 | 70000 | 2.4760 | 41746300 |
|
129 |
+
| 2.4738 | 2.3318 | 72500 | 2.4713 | 43241188 |
|
130 |
+
| 2.4629 | 2.4122 | 75000 | 2.4630 | 44730244 |
|
131 |
+
| 2.4524 | 2.4926 | 77500 | 2.4575 | 46231060 |
|
132 |
+
| 2.435 | 2.5730 | 80000 | 2.4553 | 47718964 |
|
133 |
+
| 2.4621 | 2.6534 | 82500 | 2.4475 | 49209724 |
|
134 |
+
| 2.4492 | 2.7338 | 85000 | 2.4440 | 50712980 |
|
135 |
+
| 2.4536 | 2.8142 | 87500 | 2.4394 | 52204380 |
|
136 |
+
| 2.4148 | 2.8946 | 90000 | 2.4360 | 53695620 |
|
137 |
+
| 2.4243 | 2.9750 | 92500 | 2.4350 | 55190020 |
|
138 |
+
|
139 |
+
</details>
|
140 |
+
|
141 |
+
### Framework Versions
|
142 |
+
|
143 |
+
- Transformers 4.48.1
|
144 |
+
- Pytorch 2.3.0+cu121
|
145 |
+
- Datasets 3.2.0
|
146 |
+
- Tokenizers 0.21.0
|