File size: 6,308 Bytes
ef409a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
library_name: transformers
language:
- en
- zh
license: cc-by-4.0
base_model: Helsinki-NLP/opus-mt-zh-en
tags:
- generated_from_trainer
model-index:
- name: zhtw-en
results: []
datasets:
- zetavg/coct-en-zh-tw-translations-twp-300k
pipeline_tag: translation
---
# zhtw-en
<details>
<summary>English</summary>
This model translates Traditional Chinese sentences into English, with a focus on understanding Taiwanese-style Traditional Chinese and producing more accurate English translations.
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on the [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4350
- Num Input Tokens Seen: 55653732
## Intended Uses & Limitations
### Intended Use Cases
- Translating single sentences from Chinese to English.
- Applications requiring understanding of the Chinese language as spoken in Taiwan.
### Limitations
- Designed for single-sentence translation so will not perform well on longer texts without pre-processing
- Sometimes hallucinates or omits information, especially with short or long inputs
- Further fine-tuning will address this
## Training and Evaluation Data
This model was trained and evaluated on the [Corpus of Contemporary Taiwanese Mandarin (COCT) translations](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) dataset.
- **Training Data:** 80% of the COCT dataset
- **Validation Data:** 20% of the COCT dataset
</details>
<details>
<summary>Chinese</summary>
該模型旨在將繁體中文翻譯成英文,重點是理解台灣風格的繁體中文並產生更準確的英文翻譯。
模型基於 [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) 並在 [zetavg/coct-en-zh-tw-translations-twp-300k](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集上進行微調。
在評估集上,模型取得了以下結果:
- **損失**:2.4350
- **處理的輸入標記數量**:55,653,732
## 預期用途與限制
### 預期用途
- 將單一中文句子翻譯為英文。
- 適用於需要理解台灣中文的應用程式。
### 限制
- 本模型專為單句翻譯設計,因此在處理較長文本時可能表現不佳,若未經預處理。
- 在某些情況下,模型可能會產生幻覺或遺漏信息,特別是在輸入過短或過長的情況下。
- 進一步的微調將有助於改善這些問題。
## 訓練與評估數據
該模型使用 [當代台灣普通話語料庫 (COCT)](https://huggingface.co/datasets/zetavg/coct-en-zh-tw-translations-twp-300k) 資料集進行訓練和評估。
- **訓練資料**:COCT 資料集的 80%
- **驗證資料**:COCT 資料集的 20%
</details>
## Training Procedure
### Training Hyperparameters
The following hyperparameters were used during training:
- **Learning Rate:** 5e-05
- **Train Batch Size:** 8
- **Eval Batch Size:** 8
- **Seed:** 42
- **Optimizer:** adamw\_torch with betas=(0.9,0.999) and epsilon=1e-08
- **LR Scheduler Type:** linear
- **Number of Epochs:** 3.0
### Training Results
<details>
<summary>Click here to see the training and validation losses</summary>
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 3.2254 | 0.0804 | 2500 | 2.9105 | 1493088 |
| 3.0946 | 0.1608 | 5000 | 2.8305 | 2990968 |
| 3.0473 | 0.2412 | 7500 | 2.7737 | 4477792 |
| 2.9633 | 0.3216 | 10000 | 2.7307 | 5967560 |
| 2.9355 | 0.4020 | 12500 | 2.6843 | 7463192 |
| 2.9076 | 0.4824 | 15000 | 2.6587 | 8950264 |
| 2.8714 | 0.5628 | 17500 | 2.6304 | 10443344 |
| 2.8716 | 0.6433 | 20000 | 2.6025 | 11951096 |
| 2.7989 | 0.7237 | 22500 | 2.5822 | 13432464 |
| 2.7941 | 0.8041 | 25000 | 2.5630 | 14919424 |
| 2.7692 | 0.8845 | 27500 | 2.5497 | 16415080 |
| 2.757 | 0.9649 | 30000 | 2.5388 | 17897832 |
| 2.7024 | 1.0453 | 32500 | 2.6006 | 19384812 |
| 2.7248 | 1.1257 | 35000 | 2.6042 | 20876844 |
| 2.6764 | 1.2061 | 37500 | 2.5923 | 22372340 |
| 2.6854 | 1.2865 | 40000 | 2.5793 | 23866100 |
| 2.683 | 1.3669 | 42500 | 2.5722 | 25348084 |
| 2.6871 | 1.4473 | 45000 | 2.5538 | 26854100 |
| 2.6551 | 1.5277 | 47500 | 2.5443 | 28332612 |
| 2.661 | 1.6081 | 50000 | 2.5278 | 29822156 |
| 2.6497 | 1.6885 | 52500 | 2.5266 | 31319476 |
| 2.6281 | 1.7689 | 55000 | 2.5116 | 32813220 |
| 2.6067 | 1.8494 | 57500 | 2.5047 | 34298052 |
| 2.6112 | 1.9298 | 60000 | 2.4935 | 35783604 |
| 2.5207 | 2.0102 | 62500 | 2.4946 | 37281092 |
| 2.4799 | 2.0906 | 65000 | 2.4916 | 38768588 |
| 2.4727 | 2.1710 | 67500 | 2.4866 | 40252972 |
| 2.4719 | 2.2514 | 70000 | 2.4760 | 41746300 |
| 2.4738 | 2.3318 | 72500 | 2.4713 | 43241188 |
| 2.4629 | 2.4122 | 75000 | 2.4630 | 44730244 |
| 2.4524 | 2.4926 | 77500 | 2.4575 | 46231060 |
| 2.435 | 2.5730 | 80000 | 2.4553 | 47718964 |
| 2.4621 | 2.6534 | 82500 | 2.4475 | 49209724 |
| 2.4492 | 2.7338 | 85000 | 2.4440 | 50712980 |
| 2.4536 | 2.8142 | 87500 | 2.4394 | 52204380 |
| 2.4148 | 2.8946 | 90000 | 2.4360 | 53695620 |
| 2.4243 | 2.9750 | 92500 | 2.4350 | 55190020 |
</details>
### Framework Versions
- Transformers 4.48.1
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0 |