|
# π¦π§ LLaMA-Omni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis |
|
|
|
> **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)** |
|
|
|
[](https://arxiv.org/abs/2505.02625) |
|
[](https://github.com/ictnlp/LLaMA-Omni2) |
|
[](https://huggingface.co/collections/ICTNLP/llama-omni-67fdfb852c60470175e36e9c) |
|
[](https://huggingface.co/datasets/ICTNLP/Multiturn-Speech-Conversations) |
|
|
|
LLaMA-Omni 2 is a series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. Similar to [LLaMA-Omni](https://github.com/ictnlp/LLaMA-Omni), it can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the newly introduced streaming autoregressive speech decoder, LLaMA-Omni 2 achieves higher speech quality compared to LLaMA-Omni. |
|
|
|
<div align="center"><img src="images/llama-omni2.png" width="75%"/></div> |
|
|
|
## π₯ News |
|
|
|
- [25/05] LLaMA-Omni 2 is accepted at ACL 2025 main conference! |
|
|
|
## Install |
|
|
|
1. Clone this repository. |
|
|
|
```shell |
|
git clone https://github.com/ictnlp/LLaMA-Omni2 |
|
cd LLaMA-Omni2 |
|
``` |
|
|
|
2. Install packages. |
|
|
|
```shell |
|
conda create -n llama-omni2 python=3.10 |
|
conda activate llama-omni2 |
|
pip install -e . |
|
``` |
|
|
|
## Quick Start |
|
|
|
1. Download the `Whisper-large-v3` model. |
|
|
|
```shell |
|
import whisper |
|
model = whisper.load_model("large-v3", download_root="models/speech_encoder/") |
|
``` |
|
|
|
2. Download the flow-matching model and vocoder of `CosyVoice 2`. |
|
|
|
```shell |
|
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder |
|
``` |
|
|
|
> [!Tip] |
|
> If youβre experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line: |
|
> |
|
> ```shell |
|
> export HF_ENDPOINT=https://hf-mirror.com |
|
> ``` |
|
|
|
3. Download the LLaMA-Omni2 series models from Hugging Face. `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B` support **English only**, while `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual` support **both English and Chinese**. |
|
|
|
```shell |
|
model_name=LLaMA-Omni2-7B-Bilingual |
|
huggingface-cli download --resume-download ICTNLP/$model_name --local-dir models/$model_name |
|
``` |
|
|
|
| LLaMA-Omni2 | LLaMA-Omni2-Bilingual | |
|
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | |
|
| π€Β [LLaMA-Omni2-0.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B) | π€ [LLaMA-Omni2-0.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B-Bilingual) | |
|
| π€Β [LLaMA-Omni2-1.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B) | π€ [LLaMA-Omni2-1.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B-Bilingual) | |
|
| π€Β [LLaMA-Omni2-3B](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B) | π€ [LLaMA-Omni2-3B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B-Bilingual) | |
|
| π€Β [LLaMA-Omni2-7B](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B) | π€ [LLaMA-Omni2-7B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B-Bilingual) | |
|
| π€Β [LLaMA-Omni2-14B](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B) | π€ [LLaMA-Omni2-14B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B-Bilingual) | |
|
| - | π€ [LLaMA-Omni2-32B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-32B-Bilingual) | |
|
|
|
## Gradio Demo |
|
|
|
1. Launch a controller. |
|
|
|
```shell |
|
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000 |
|
``` |
|
|
|
2. Launch a gradio web server. |
|
|
|
```shell |
|
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder |
|
``` |
|
|
|
3. Launch a model worker. |
|
|
|
```shell |
|
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name |
|
``` |
|
|
|
4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-Omni2! |
|
|
|
## Local Inference |
|
|
|
```shell |
|
output_dir=examples/$model_name |
|
mkdir -p $output_dir |
|
|
|
python llama_omni2/inference/run_llama_omni2.py \ |
|
--model_path models/$model_name \ |
|
--question_file examples/questions.json \ |
|
--answer_file $output_dir/answers.jsonl \ |
|
--temperature 0 \ |
|
--s2s |
|
|
|
python llama_omni2/inference/run_cosy2_decoder.py \ |
|
--input-path $output_dir/answers.jsonl \ |
|
--output-dir $output_dir/wav \ |
|
--lang en |
|
``` |
|
|
|
## LICENSE |
|
|
|
Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may **NOT** be used for commercial purposes. |
|
|
|
You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met: |
|
|
|
- **Non-commercial use**: The model may not be used for any commercial purposes. |
|
- **Citation**: If you use this model in your research, please cite the original work. |
|
|
|
### Commercial Use Restriction |
|
|
|
For any commercial use inquiries or to obtain a commercial license, please contact `[email protected]`. |
|
|
|
## Acknowledgements |
|
|
|
- [CosyVoice 2](https://github.com/FunAudioLLM/CosyVoice): We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2. |
|
- [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor. |
|
|
|
## Citation |
|
|
|
If you have any questions, please feel free to submit an issue or contact `[email protected]`. |
|
|
|
If our work is useful for you, please cite as: |
|
|
|
``` |
|
@inproceedings{ |
|
fang2025llamaomni2, |
|
title={{LL}a{MA}-{O}mni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis}, |
|
author={Fang, Qingkai and Zhou, Yan and Guo, Shoutao and Zhang, Shaolei and Feng, Yang}, |
|
booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics}, |
|
year={2025} |
|
} |
|
|
|
@inproceedings{ |
|
fang2025llamaomni, |
|
title={{LL}a{MA}-{O}mni: Seamless Speech Interaction with Large Language Models}, |
|
author={Qingkai Fang and Shoutao Guo and Yan Zhou and Zhengrui Ma and Shaolei Zhang and Yang Feng}, |
|
booktitle={The Thirteenth International Conference on Learning Representations}, |
|
year={2025}, |
|
url={https://openreview.net/forum?id=PYmrUQmMEw} |
|
} |
|
``` |
|
|