Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🦙🎧 LLaMA-Omni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
|
2 |
+
|
3 |
+
> **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)**
|
4 |
+
|
5 |
+
[](https://arxiv.org/abs/2505.02625)
|
6 |
+
[](https://github.com/ictnlp/LLaMA-Omni2)
|
7 |
+
[](https://huggingface.co/collections/ICTNLP/llama-omni-67fdfb852c60470175e36e9c)
|
8 |
+
[](https://huggingface.co/datasets/ICTNLP/Multiturn-Speech-Conversations)
|
9 |
+
|
10 |
+
LLaMA-Omni 2 is a series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. Similar to [LLaMA-Omni](https://github.com/ictnlp/LLaMA-Omni), it can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the newly introduced streaming autoregressive speech decoder, LLaMA-Omni 2 achieves higher speech quality compared to LLaMA-Omni.
|
11 |
+
|
12 |
+
<div align="center"><img src="images/llama-omni2.png" width="75%"/></div>
|
13 |
+
|
14 |
+
## 🔥 News
|
15 |
+
|
16 |
+
- [25/05] LLaMA-Omni 2 is accepted at ACL 2025 main conference!
|
17 |
+
|
18 |
+
## Install
|
19 |
+
|
20 |
+
1. Clone this repository.
|
21 |
+
|
22 |
+
```shell
|
23 |
+
git clone https://github.com/ictnlp/LLaMA-Omni2
|
24 |
+
cd LLaMA-Omni2
|
25 |
+
```
|
26 |
+
|
27 |
+
2. Install packages.
|
28 |
+
|
29 |
+
```shell
|
30 |
+
conda create -n llama-omni2 python=3.10
|
31 |
+
conda activate llama-omni2
|
32 |
+
pip install -e .
|
33 |
+
```
|
34 |
+
|
35 |
+
## Quick Start
|
36 |
+
|
37 |
+
1. Download the `Whisper-large-v3` model.
|
38 |
+
|
39 |
+
```shell
|
40 |
+
import whisper
|
41 |
+
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
|
42 |
+
```
|
43 |
+
|
44 |
+
2. Download the flow-matching model and vocoder of `CosyVoice 2`.
|
45 |
+
|
46 |
+
```shell
|
47 |
+
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder
|
48 |
+
```
|
49 |
+
|
50 |
+
> [!Tip]
|
51 |
+
> If you’re experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line:
|
52 |
+
>
|
53 |
+
> ```shell
|
54 |
+
> export HF_ENDPOINT=https://hf-mirror.com
|
55 |
+
> ```
|
56 |
+
|
57 |
+
3. Download the LLaMA-Omni2 series models from Hugging Face. `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B` support **English only**, while `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual` support **both English and Chinese**.
|
58 |
+
|
59 |
+
```shell
|
60 |
+
model_name=LLaMA-Omni2-7B-Bilingual
|
61 |
+
huggingface-cli download --resume-download ICTNLP/$model_name --local-dir models/$model_name
|
62 |
+
```
|
63 |
+
|
64 |
+
| LLaMA-Omni2 | LLaMA-Omni2-Bilingual |
|
65 |
+
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- |
|
66 |
+
| 🤗 [LLaMA-Omni2-0.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B) | 🤗 [LLaMA-Omni2-0.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B-Bilingual) |
|
67 |
+
| 🤗 [LLaMA-Omni2-1.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B) | 🤗 [LLaMA-Omni2-1.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B-Bilingual) |
|
68 |
+
| 🤗 [LLaMA-Omni2-3B](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B) | 🤗 [LLaMA-Omni2-3B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B-Bilingual) |
|
69 |
+
| 🤗 [LLaMA-Omni2-7B](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B) | 🤗 [LLaMA-Omni2-7B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B-Bilingual) |
|
70 |
+
| 🤗 [LLaMA-Omni2-14B](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B) | 🤗 [LLaMA-Omni2-14B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B-Bilingual) |
|
71 |
+
| - | 🤗 [LLaMA-Omni2-32B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-32B-Bilingual) |
|
72 |
+
|
73 |
+
## Gradio Demo
|
74 |
+
|
75 |
+
1. Launch a controller.
|
76 |
+
|
77 |
+
```shell
|
78 |
+
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000
|
79 |
+
```
|
80 |
+
|
81 |
+
2. Launch a gradio web server.
|
82 |
+
|
83 |
+
```shell
|
84 |
+
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder
|
85 |
+
```
|
86 |
+
|
87 |
+
3. Launch a model worker.
|
88 |
+
|
89 |
+
```shell
|
90 |
+
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name
|
91 |
+
```
|
92 |
+
|
93 |
+
4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-Omni2!
|
94 |
+
|
95 |
+
## Local Inference
|
96 |
+
|
97 |
+
```shell
|
98 |
+
output_dir=examples/$model_name
|
99 |
+
mkdir -p $output_dir
|
100 |
+
|
101 |
+
python llama_omni2/inference/run_llama_omni2.py \
|
102 |
+
--model_path models/$model_name \
|
103 |
+
--question_file examples/questions.json \
|
104 |
+
--answer_file $output_dir/answers.jsonl \
|
105 |
+
--temperature 0 \
|
106 |
+
--s2s
|
107 |
+
|
108 |
+
python llama_omni2/inference/run_cosy2_decoder.py \
|
109 |
+
--input-path $output_dir/answers.jsonl \
|
110 |
+
--output-dir $output_dir/wav \
|
111 |
+
--lang en
|
112 |
+
```
|
113 |
+
|
114 |
+
## LICENSE
|
115 |
+
|
116 |
+
Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may **NOT** be used for commercial purposes.
|
117 |
+
|
118 |
+
You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met:
|
119 |
+
|
120 |
+
- **Non-commercial use**: The model may not be used for any commercial purposes.
|
121 |
+
- **Citation**: If you use this model in your research, please cite the original work.
|
122 |
+
|
123 |
+
### Commercial Use Restriction
|
124 |
+
|
125 |
+
For any commercial use inquiries or to obtain a commercial license, please contact `[email protected]`.
|
126 |
+
|
127 |
+
## Acknowledgements
|
128 |
+
|
129 |
+
- [CosyVoice 2](https://github.com/FunAudioLLM/CosyVoice): We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2.
|
130 |
+
- [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor.
|
131 |
+
|
132 |
+
## Citation
|
133 |
+
|
134 |
+
If you have any questions, please feel free to submit an issue or contact `[email protected]`.
|
135 |
+
|
136 |
+
If our work is useful for you, please cite as:
|
137 |
+
|
138 |
+
```
|
139 |
+
@inproceedings{
|
140 |
+
fang2025llamaomni2,
|
141 |
+
title={{LL}a{MA}-{O}mni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis},
|
142 |
+
author={Fang, Qingkai and Zhou, Yan and Guo, Shoutao and Zhang, Shaolei and Feng, Yang},
|
143 |
+
booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics},
|
144 |
+
year={2025}
|
145 |
+
}
|
146 |
+
|
147 |
+
@inproceedings{
|
148 |
+
fang2025llamaomni,
|
149 |
+
title={{LL}a{MA}-{O}mni: Seamless Speech Interaction with Large Language Models},
|
150 |
+
author={Qingkai Fang and Shoutao Guo and Yan Zhou and Zhengrui Ma and Shaolei Zhang and Yang Feng},
|
151 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
152 |
+
year={2025},
|
153 |
+
url={https://openreview.net/forum?id=PYmrUQmMEw}
|
154 |
+
}
|
155 |
+
```
|