YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

πŸ¦™πŸŽ§ LLaMA-Omni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis

Authors: Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, Yang Feng*

arXiv code models dataset

LLaMA-Omni 2 is a series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. Similar to LLaMA-Omni, it can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the newly introduced streaming autoregressive speech decoder, LLaMA-Omni 2 achieves higher speech quality compared to LLaMA-Omni.

πŸ”₯ News

  • [25/05] LLaMA-Omni 2 is accepted at ACL 2025 main conference!

Install

  1. Clone this repository.
git clone https://github.com/ictnlp/LLaMA-Omni2
cd LLaMA-Omni2
  1. Install packages.
conda create -n llama-omni2 python=3.10
conda activate llama-omni2
pip install -e .

Quick Start

  1. Download the Whisper-large-v3 model.
import whisper
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")
  1. Download the flow-matching model and vocoder of CosyVoice 2.
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder

If you’re experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line:

export HF_ENDPOINT=https://hf-mirror.com
  1. Download the LLaMA-Omni2 series models from Hugging Face. LLaMA-Omni2-0.5B/1.5B/3B/7B/14B support English only, while LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual support both English and Chinese.
model_name=LLaMA-Omni2-7B-Bilingual
huggingface-cli download --resume-download ICTNLP/$model_name --local-dir models/$model_name
LLaMA-Omni2 LLaMA-Omni2-Bilingual
πŸ€— LLaMA-Omni2-0.5B πŸ€— LLaMA-Omni2-0.5B-Bilingual
πŸ€— LLaMA-Omni2-1.5B πŸ€— LLaMA-Omni2-1.5B-Bilingual
πŸ€— LLaMA-Omni2-3B πŸ€— LLaMA-Omni2-3B-Bilingual
πŸ€— LLaMA-Omni2-7B πŸ€— LLaMA-Omni2-7B-Bilingual
πŸ€— LLaMA-Omni2-14B πŸ€— LLaMA-Omni2-14B-Bilingual
- πŸ€— LLaMA-Omni2-32B-Bilingual

Gradio Demo

  1. Launch a controller.

    python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000
    
  2. Launch a gradio web server.

    python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder
    
  3. Launch a model worker.

    python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name
    
  4. Visit http://localhost:8000/ and interact with LLaMA-Omni2!

Local Inference

output_dir=examples/$model_name
mkdir -p $output_dir

python llama_omni2/inference/run_llama_omni2.py \
    --model_path models/$model_name \
    --question_file examples/questions.json \
    --answer_file $output_dir/answers.jsonl \
    --temperature 0 \
    --s2s

python llama_omni2/inference/run_cosy2_decoder.py \
    --input-path $output_dir/answers.jsonl \
    --output-dir $output_dir/wav \
    --lang en

LICENSE

Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may NOT be used for commercial purposes.

You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met:

  • Non-commercial use: The model may not be used for any commercial purposes.
  • Citation: If you use this model in your research, please cite the original work.

Commercial Use Restriction

For any commercial use inquiries or to obtain a commercial license, please contact [email protected].

Acknowledgements

  • CosyVoice 2: We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2.
  • SLAM-LLM: We borrow some code about speech encoder and speech adaptor.

Citation

If you have any questions, please feel free to submit an issue or contact [email protected].

If our work is useful for you, please cite as:

@inproceedings{
  fang2025llamaomni2,
  title={{LL}a{MA}-{O}mni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis},
  author={Fang, Qingkai and Zhou, Yan and Guo, Shoutao and Zhang, Shaolei and Feng, Yang},
  booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics},
  year={2025}
}

@inproceedings{
  fang2025llamaomni,
  title={{LL}a{MA}-{O}mni: Seamless Speech Interaction with Large Language Models},
  author={Qingkai Fang and Shoutao Guo and Yan Zhou and Zhengrui Ma and Shaolei Zhang and Yang Feng},
  booktitle={The Thirteenth International Conference on Learning Representations},
  year={2025},
  url={https://openreview.net/forum?id=PYmrUQmMEw}
}
Downloads last month
25
Safetensors
Model size
16.1B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including ICTNLP/LLaMA-Omni2-14B