File size: 8,902 Bytes
67268c3 2fe8c1c 67268c3 2fe8c1c 67268c3 8bc9393 67268c3 a0bc766 3c25380 cf4547c a0bc766 cf4547c a0bc766 cf4547c e7f7813 67268c3 a0bc766 2ba1175 573674f 0ad3b4a a0bc766 0ad3b4a 2fe8c1c a0bc766 a94c4e0 a0bc766 67268c3 a0bc766 67268c3 a0bc766 67268c3 a0bc766 67268c3 a0bc766 20d983a a0bc766 67268c3 a0bc766 67268c3 a0bc766 67268c3 a0bc766 2fe8c1c a0bc766 2fe8c1c a0bc766 20d983a a0bc766 2fe8c1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
datasets:
- Borcherding/Depth2RobotsV2_Annotations
tags:
- depth-to-robot
- image-to-image
- cyclegan
- depth-to-anything
base_model:
- keras-io/CycleGAN
---
# CycleGAN_Depth2RobotsV2_Blend Model
This model transforms depth maps into robot-style images, and also transforms robot-style images into estimated depth maps using CycleGAN architecture.
<div style="display: flex; flex-wrap: wrap; justify-content: center;">
<div style="display: flex; width: 100%; justify-content: center; margin-bottom: 10px;">
<img src="testOutput/depth2image/custom_real.png" alt="depth map" title="Depth Map (Input)" width="45%">
<img src="testOutput/depth2image/custom_fake.png" alt="robot-style image" title="Robot-Style Image (Output)" width="45%">
</div>
<div style="display: flex; width: 100%; justify-content: center;">
<img src="testOutput/image2depth/custom_real.png" alt="robot-style image" title="Robot-Style Image (Input)" width="45%">
<img src="testOutput/image2depth/custom_fake.png" alt="depth map" title="Depth Map (Output)" width="45%">
</div>
</div>
## Model Description
- This model was trained on robot images generated with SDXL, and their associated depth maps, taken with Depth-Anything-V2:
[Depth2RobotsV2_Annotations](https://huggingface.co/datasets/Borcherding/Depth2RobotsV2_Annotations)
- using CycleGAN architecture
- Training notebooks and dataset genertors can be found in the src folder, and can also be found in the github repo !(Ollama-Agent-Roll-Cage/controlnet-2-anything)[https://github.com/Ollama-Agent-Roll-Cage/controlnet-2-anything]
- It supports bidirectional transformation:
- Depth map → Robot-style imagery
- Robot-style imagery → Depth map
- The model uses a ResNet-based generator with residual blocks
## Installation
```bash
# Clone the repository
git clone https://github.com/Ollama-Agent-Roll-Cage/controlnet-2-anything
cd cycleGAN_Depth2RobotsV2
# Install dependencies
pip install torch torchvision gradio pyvirtualcam
```
## Usage Options
### Option 1: Simple Test Interface
Run the simple test interface to quickly try out the model:
```bash
python cycleGANtest.py
```
This launches a Gradio interface where you can:
- Upload an image
- Select conversion direction (Depth to Image or Image to Depth)
- Transform the image with a single click
### Option 2: Webcam Integration with Depth Estimation
For a more advanced setup that includes real-time webcam processing with Depth Anything V2:
```bash
# Set the path to Depth Anything V2
export DEPTH_ANYTHING_V2_PATH=/path/to/depth-anything-v2
# Run the integrated application
python discordDepth2AnythingGAN.py
```
This launches a Gradio interface that allows you to:
- Capture webcam input
- Generate depth maps using Depth Anything V2
- Apply winter-themed colormap to depth maps
- Apply CycleGAN transformation in either direction
- Output to a virtual camera for use in video conferencing or streaming
## Using the Model Programmatically
```python
import torch
import numpy as np
import torchvision.transforms as transforms
from PIL import Image
from huggingface_hub import hf_hub_download
# Define the Generator architecture (as shown in the provided code)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv_block = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(channels, channels, 3),
nn.InstanceNorm2d(channels),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(channels, channels, 3),
nn.InstanceNorm2d(channels)
)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_channels=3, output_channels=3, n_residual_blocks=9):
super(Generator, self).__init__()
# Initial convolution
model = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_channels, 64, 7),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True)
]
# Downsampling
in_features = 64
out_features = in_features * 2
for _ in range(2):
model += [
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)
]
in_features = out_features
out_features = in_features * 2
# Residual blocks
for _ in range(n_residual_blocks):
model += [ResidualBlock(in_features)]
# Upsampling
out_features = in_features // 2
for _ in range(2):
model += [
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
nn.InstanceNorm2d(out_features),
nn.ReLU(inplace=True)
]
in_features = out_features
out_features = in_features // 2
# Output layer
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(64, output_channels, 7),
nn.Tanh()
]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
# Download the model
def download_model(direction="depth2image"):
if direction == "depth2image":
filename = "latest_net_G_A.pth"
else: # "image2depth"
filename = "latest_net_G_B.pth"
model_path = hf_hub_download(
repo_id="Borcherding/CycleGAN_Depth2RobotsV2_Blend",
filename=filename
)
return model_path
# Image preprocessing
def preprocess_image(image):
"""
Preprocess image for model input
Args:
image: PIL Image or numpy array
Returns:
torch.Tensor: Normalized tensor ready for model input
"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'), 'RGB')
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
return transform(image).unsqueeze(0)
# Image postprocessing
def postprocess_image(tensor):
"""
Convert model output tensor to numpy image
Args:
tensor: Model output tensor
Returns:
numpy.ndarray: RGB image array (0-255)
"""
tensor = tensor.squeeze(0).cpu()
tensor = (tensor + 1) / 2
tensor = tensor.clamp(0, 1)
tensor = tensor.permute(1, 2, 0).numpy()
return (tensor * 255).astype(np.uint8)
# Example usage
def transform_image(input_image_path, direction="depth2image"):
"""
Transform an image using the Depth2Robot model
Args:
input_image_path: Path to input image
direction: "depth2image" or "image2depth"
Returns:
numpy.ndarray: Transformed image
"""
# Load model
model_path = download_model(direction)
model = Generator()
model.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
model.eval()
# Load and preprocess image
input_image = Image.open(input_image_path).convert('RGB')
input_tensor = preprocess_image(input_image)
# Generate output
with torch.no_grad():
output_tensor = model(input_tensor)
# Postprocess output
output_image = postprocess_image(output_tensor)
return output_image
```
## Model Checkpoints
The model checkpoints are available on Hugging Face:
- Repository: [Borcherding/Depth2RobotsV2_Annotations](https://huggingface.co/datasets/Borcherding/Depth2RobotsV2_Annotations)
- Files:
- `latest_net_G_A.pth` - Generator for Depth to Robot Image transformation
- `latest_net_G_B.pth` - Generator for Robot Image to Depth transformation
## Integration with Depth Anything V2
The integrated application (`discordDepth2AnythingGAN.py`) also leverages [Depth Anything V2](https://github.com/depth-anything/Depth-Anything-V2) for real-time depth estimation, providing a complete pipeline:
1. Capture webcam input
2. Generate depth maps with Depth Anything V2
3. Apply CycleGAN transformation
4. Output to virtual camera
## Requirements
- Python 3.7+
- PyTorch 1.7+
- torchvision
- gradio
- pyvirtualcam (for webcam integration)
- OpenCV (cv2)
- Depth Anything V2 (for integrated application)
## License
[Insert your license information here]
## Acknowledgments
- This model uses CycleGAN architecture from the paper [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) by Zhu et al.
- The implementation is based on [junyanz/pytorch-CycleGAN-and-pix2pix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
- Integrated application leverages Depth Anything V2 for depth estimation |