Borcherding commited on
Commit
67268c3
·
verified ·
1 Parent(s): 3ccf3d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -34
README.md CHANGED
@@ -1,34 +1,38 @@
1
- ---
2
- tags:
3
- - depth-to-robot
4
- - image-to-image
5
- - cyclegan
6
- ---
7
-
8
- # Depth2Robot GAN Model
9
-
10
- This model transforms depth maps into robot-style images using CycleGAN.
11
-
12
- ## Model Description
13
-
14
- - This model was trained on depth maps and robot images.
15
- - It converts grayscale depth maps to colorful robot-style imagery.
16
- - Trained using CycleGAN architecture.
17
-
18
- ## Usage
19
-
20
- ```python
21
- import torch
22
- from huggingface_hub import hf_hub_download
23
-
24
- # Download the model
25
- model_path = hf_hub_download(repo_id="Borcherding/depth2AnythingCycleGAN_RobotsV2", filename="latest_net_G.pth")
26
-
27
- # Load the model (you need to define the Generator class)
28
- model = Generator()
29
- model.load_state_dict(torch.load(model_path), strict=False)
30
- model.eval()
31
-
32
- # Use the model for inference
33
- # ...
34
- ```
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - depth-to-robot
4
+ - image-to-image
5
+ - cyclegan
6
+ ---
7
+
8
+ # Depth2Robot GAN Model
9
+
10
+ This model transforms depth maps into robot-style images using CycleGAN.
11
+
12
+
13
+ testOutput/depth2image/custom_fake.png
14
+ <img src="https://huggingface.co/Borcherding/depth2AnythingCycleGAN_RobotsV2/blob/main/testOutput/depth2image/custom_fake.png" alt="Image description" width="500" height="200">
15
+
16
+ ## Model Description
17
+
18
+ - This model was trained on depth maps and robot images.
19
+ - It converts grayscale depth maps to colorful robot-style imagery.
20
+ - Trained using CycleGAN architecture.
21
+
22
+ ## Usage
23
+
24
+ ```python
25
+ import torch
26
+ from huggingface_hub import hf_hub_download
27
+
28
+ # Download the model
29
+ model_path = hf_hub_download(repo_id="Borcherding/depth2AnythingCycleGAN_RobotsV2", filename="latest_net_G.pth")
30
+
31
+ # Load the model (you need to define the Generator class)
32
+ model = Generator()
33
+ model.load_state_dict(torch.load(model_path), strict=False)
34
+ model.eval()
35
+
36
+ # Use the model for inference
37
+ # ...
38
+ ```