Borcherding commited on
Commit
2fe8c1c
·
verified ·
1 Parent(s): 573674f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -7
README.md CHANGED
@@ -1,8 +1,13 @@
1
  ---
 
 
2
  tags:
3
  - depth-to-robot
4
  - image-to-image
5
  - cyclegan
 
 
 
6
  ---
7
 
8
  # cycleGAN_Depth2RobotsV2 Model
@@ -22,7 +27,7 @@ This model transforms depth maps into robot-style images, and also transforms ro
22
 
23
  ## Model Description
24
 
25
- - This model was trained robot images generated with SDXL, and their associated depth maps take with Depth Anything V2:
26
  [Depth2RobotsV2_Annotations](https://huggingface.co/datasets/Borcherding/Depth2RobotsV2_Annotations)
27
  - using CycleGAN architecture
28
  - It supports bidirectional transformation:
@@ -34,8 +39,8 @@ This model transforms depth maps into robot-style images, and also transforms ro
34
 
35
  ```bash
36
  # Clone the repository
37
- git clone https://github.com/yourusername/depth2robot
38
- cd depth2robot
39
 
40
  # Install dependencies
41
  pip install torch torchvision gradio pyvirtualcam
@@ -160,7 +165,7 @@ def download_model(direction="depth2image"):
160
  filename = "latest_net_G_B.pth"
161
 
162
  model_path = hf_hub_download(
163
- repo_id="Borcherding/depth2AnythingCycleGAN_RobotsV2",
164
  filename=filename
165
  )
166
  return model_path
@@ -236,10 +241,10 @@ def transform_image(input_image_path, direction="depth2image"):
236
  return output_image
237
  ```
238
 
239
- ## Model Checkpoints
240
 
241
  The model checkpoints are available on Hugging Face:
242
- - Repository: [Borcherding/depth2AnythingCycleGAN_RobotsV2](https://huggingface.co/Borcherding/depth2AnythingCycleGAN_RobotsV2)
243
  - Files:
244
  - `latest_net_G_A.pth` - Generator for Depth to Robot Image transformation
245
  - `latest_net_G_B.pth` - Generator for Robot Image to Depth transformation
@@ -271,4 +276,4 @@ The integrated application (`integrated-depth-cyclegan.py`) also leverages [Dept
271
 
272
  - This model uses CycleGAN architecture from the paper [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) by Zhu et al.
273
  - The implementation is based on [junyanz/pytorch-CycleGAN-and-pix2pix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
274
- - Integrated application leverages Depth Anything V2 for depth estimation
 
1
  ---
2
+ datasets:
3
+ - Borcherding/Depth2RobotsV2_Annotations
4
  tags:
5
  - depth-to-robot
6
  - image-to-image
7
  - cyclegan
8
+ - depth-to-anything
9
+ base_model:
10
+ - keras-io/CycleGAN
11
  ---
12
 
13
  # cycleGAN_Depth2RobotsV2 Model
 
27
 
28
  ## Model Description
29
 
30
+ - This model was trained robot images generated with SDXL, and their associated depth maps were taken with Depth Anything V2:
31
  [Depth2RobotsV2_Annotations](https://huggingface.co/datasets/Borcherding/Depth2RobotsV2_Annotations)
32
  - using CycleGAN architecture
33
  - It supports bidirectional transformation:
 
39
 
40
  ```bash
41
  # Clone the repository
42
+ git clone https://huggingface.co/Borcherding/cycleGAN_Depth2RobotsV2
43
+ cd cycleGAN_Depth2RobotsV2
44
 
45
  # Install dependencies
46
  pip install torch torchvision gradio pyvirtualcam
 
165
  filename = "latest_net_G_B.pth"
166
 
167
  model_path = hf_hub_download(
168
+ repo_id="Borcherding/cycleGAN_Depth2RobotsV2",
169
  filename=filename
170
  )
171
  return model_path
 
241
  return output_image
242
  ```
243
 
244
+ ## Model Checkpoints
245
 
246
  The model checkpoints are available on Hugging Face:
247
+ - Repository: [Borcherding/Depth2RobotsV2_Annotations](https://huggingface.co/datasets/Borcherding/Depth2RobotsV2_Annotations)
248
  - Files:
249
  - `latest_net_G_A.pth` - Generator for Depth to Robot Image transformation
250
  - `latest_net_G_B.pth` - Generator for Robot Image to Depth transformation
 
276
 
277
  - This model uses CycleGAN architecture from the paper [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) by Zhu et al.
278
  - The implementation is based on [junyanz/pytorch-CycleGAN-and-pix2pix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)
279
+ - Integrated application leverages Depth Anything V2 for depth estimation