metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2048
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-distilroberta-v1
widget:
- source_sentence: Can you provide the link to the Discrete Math final exam from 2024?
sentences:
- >-
The final exam for Discrete Math course, offered by the general
department, from 2024, is available at the following link:
[https://drive.google.com/file/d/1pCpnVt6IiOTMlGTYw3sUZ8NEnI3thwO5/view?usp=sharing
- >-
The final exam for internet of things course, offered by the computer
science department, from 2025, is available at the following link:
[https://drive.google.com/file/d/1UjtShx1hFNg8_gB5NsqGDGKAvpkkBfm9/view?usp=sharing
- >-
The final exam for the physics1 course, offered by the general
department, from 2018, is available at the following link:
[https://drive.google.com/file/d/1T-KLo2JW3fLFSu1hT7WtGOnmXFQTqMin/view].
- source_sentence: Can you provide the exam link for the Physics 1 course from 2023?
sentences:
- >-
The final exam for the physics1 course, offered by the general
department, from 2023, is available at the following link:
[https://drive.google.com/file/d/1TrlV8yBdNHJjGVsDBD6EU2A4G80nU1kV/view?usp=sharing].
- >-
The final exam for the Probability & Statistics course, offered by the
general department, from 2021, is available at the following link:
[https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].
- >-
Dr. Noran el sayed is part of the Unknown department and can be reached
at [email protected].
- source_sentence: >-
How can I access the final exam for the Software Engineering class from
2015?
sentences:
- >-
The final exam for Software Engineering course, offered by the
information system department, from 2015, is available at the following
link:
[https://drive.google.com/file/d/1ve8sh5HhCeQqr_swbADxYiYvJRkFBiAi/view
- >-
Dr. Ahmed Soliman (Ahmed Nagiub) is part of the Unknown department and
can be reached at [email protected].
- >-
The final exam for Software Engineering course, offered by the
information system department, from 2020, is available at the following
link:
[https://drive.google.com/file/d/1qYvsJGm5FWTq9L7TlJOGg85vPHtu7G6d/view
- source_sentence: Is there a link available for the 2023 Probability & Stats course exam?
sentences:
- >-
The final exam for operating system course, offered by the computer
science department, from 2024, is available at the following link:
[https://drive.google.com/file/d/1ITc9Hs3s0sw8SPEfKSAlE-sQTngL5oaL/view?usp=sharing
- >-
The final exam for the Probability & Statistics course, offered by the
general department, from 2023, is available at the following link:
[https://drive.google.com/file/d/1kh3KbahqTnCSNwqDyB8iSPSIMQ9B9ZUZ/view?usp=sharing].
- >-
The final exam for computer Architecture and organization course,
offered by the general department, from 2024, is available at the
following link:
[https://drive.google.com/file/d/1BBVB6U8nnEA8sLUlmR3J52TD8kjWlGWM/view?usp=sharing
- source_sentence: >-
How do I access the final exam for the Digital Image Processing course
from 2016?
sentences:
- >-
The final exam for the Statistical Analysis course, offered by the
general department, from 2025, is available at the following link:
[https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing
- >-
The final exam for Digital Image Processing course, offered by the
computer science department, from 2016, is available at the following
link:
[https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view
- >-
The final exam for the Probability & Statistics course, offered by the
general department, from 2021, is available at the following link:
[https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ai college validation
type: ai-college-validation
metrics:
- type: cosine_accuracy@1
value: 0.55078125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82421875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.890625
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.95703125
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.55078125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27473958333333326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17812499999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.095703125
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.55078125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82421875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.890625
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.95703125
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7655983040473691
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7029761904761903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7052547923124669
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.66015625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9453125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66015625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31510416666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66015625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9453125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8528799902335868
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8027994791666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8027994791666666
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.66015625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.94140625
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99609375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66015625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3138020833333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19921875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66015625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.94140625
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99609375
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8541928904310672
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8045572916666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8045572916666667
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.67578125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9453125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67578125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31510416666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67578125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9453125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8605213037068725
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8130208333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8130208333333334
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8643861203886329
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8181640625000001
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8181640625
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8655801956151241
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8196614583333336
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8196614583333333
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.69140625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9609375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.98828125
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69140625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3203125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19765625000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69140625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9609375
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.98828125
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8686343143993309
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8239908854166668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8239908854166667
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8655801956151241
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8196614583333336
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8196614583333333
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/all-distilroberta-v1
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Bo8dady/finetuned-College-embeddings")
sentences = [
'How do I access the final exam for the Digital Image Processing course from 2016?',
'The final exam for Digital Image Processing course, offered by the computer science department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view',
'The final exam for the Statistical Analysis course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5508 |
cosine_accuracy@3 |
0.8242 |
cosine_accuracy@5 |
0.8906 |
cosine_accuracy@10 |
0.957 |
cosine_precision@1 |
0.5508 |
cosine_precision@3 |
0.2747 |
cosine_precision@5 |
0.1781 |
cosine_precision@10 |
0.0957 |
cosine_recall@1 |
0.5508 |
cosine_recall@3 |
0.8242 |
cosine_recall@5 |
0.8906 |
cosine_recall@10 |
0.957 |
cosine_ndcg@10 |
0.7656 |
cosine_mrr@10 |
0.703 |
cosine_map@100 |
0.7053 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6602 |
cosine_accuracy@3 |
0.9453 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6602 |
cosine_precision@3 |
0.3151 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6602 |
cosine_recall@3 |
0.9453 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8529 |
cosine_mrr@10 |
0.8028 |
cosine_map@100 |
0.8028 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6602 |
cosine_accuracy@3 |
0.9414 |
cosine_accuracy@5 |
0.9961 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6602 |
cosine_precision@3 |
0.3138 |
cosine_precision@5 |
0.1992 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6602 |
cosine_recall@3 |
0.9414 |
cosine_recall@5 |
0.9961 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8542 |
cosine_mrr@10 |
0.8046 |
cosine_map@100 |
0.8046 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6758 |
cosine_accuracy@3 |
0.9453 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6758 |
cosine_precision@3 |
0.3151 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6758 |
cosine_recall@3 |
0.9453 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8605 |
cosine_mrr@10 |
0.813 |
cosine_map@100 |
0.813 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6836 |
cosine_accuracy@3 |
0.957 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6836 |
cosine_precision@3 |
0.319 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6836 |
cosine_recall@3 |
0.957 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8644 |
cosine_mrr@10 |
0.8182 |
cosine_map@100 |
0.8182 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6836 |
cosine_accuracy@3 |
0.957 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6836 |
cosine_precision@3 |
0.319 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6836 |
cosine_recall@3 |
0.957 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8656 |
cosine_mrr@10 |
0.8197 |
cosine_map@100 |
0.8197 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6914 |
cosine_accuracy@3 |
0.9609 |
cosine_accuracy@5 |
0.9883 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6914 |
cosine_precision@3 |
0.3203 |
cosine_precision@5 |
0.1977 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6914 |
cosine_recall@3 |
0.9609 |
cosine_recall@5 |
0.9883 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8686 |
cosine_mrr@10 |
0.824 |
cosine_map@100 |
0.824 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6836 |
cosine_accuracy@3 |
0.957 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.6836 |
cosine_precision@3 |
0.319 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.6836 |
cosine_recall@3 |
0.957 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8656 |
cosine_mrr@10 |
0.8197 |
cosine_map@100 |
0.8197 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 1e-05
warmup_ratio
: 0.2
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 1e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
ai-college-validation_cosine_ndcg@10 |
0 |
0 |
- |
- |
0.7656 |
1.0 |
64 |
- |
- |
0.8542 |
1.5469 |
100 |
0.0359 |
0.0239 |
0.8529 |
2.9688 |
192 |
- |
- |
0.8575 |
1.5469 |
100 |
0.0126 |
0.0306 |
0.8621 |
3.0781 |
200 |
0.0155 |
0.0267 |
0.8575 |
4.625 |
300 |
0.0195 |
0.0287 |
0.8542 |
4.9375 |
320 |
- |
- |
0.8556 |
1.5469 |
100 |
0.0034 |
0.0289 |
0.8605 |
2.9688 |
192 |
- |
- |
0.8615 |
1.5469 |
100 |
0.0014 |
0.0312 |
0.8644 |
2.9688 |
192 |
- |
- |
0.8656 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}