---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2048
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-distilroberta-v1
widget:
- source_sentence: Can you provide the link to the Discrete Math final exam from 2024?
sentences:
- 'The final exam for Discrete Math course, offered by the general department, from
2024, is available at the following link: [https://drive.google.com/file/d/1pCpnVt6IiOTMlGTYw3sUZ8NEnI3thwO5/view?usp=sharing'
- 'The final exam for internet of things course, offered by the computer science
department, from 2025, is available at the following link: [https://drive.google.com/file/d/1UjtShx1hFNg8_gB5NsqGDGKAvpkkBfm9/view?usp=sharing'
- 'The final exam for the physics1 course, offered by the general department, from
2018, is available at the following link: [https://drive.google.com/file/d/1T-KLo2JW3fLFSu1hT7WtGOnmXFQTqMin/view].'
- source_sentence: Can you provide the exam link for the Physics 1 course from 2023?
sentences:
- 'The final exam for the physics1 course, offered by the general department, from
2023, is available at the following link: [https://drive.google.com/file/d/1TrlV8yBdNHJjGVsDBD6EU2A4G80nU1kV/view?usp=sharing].'
- 'The final exam for the Probability & Statistics course, offered by the general
department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].'
- Dr. Noran el sayed is part of the Unknown department and can be reached at noran.elsayed@cis.asu.edu.eg.
- source_sentence: How can I access the final exam for the Software Engineering class
from 2015?
sentences:
- 'The final exam for Software Engineering course, offered by the information system
department, from 2015, is available at the following link: [https://drive.google.com/file/d/1ve8sh5HhCeQqr_swbADxYiYvJRkFBiAi/view'
- Dr. Ahmed Soliman (Ahmed Nagiub) is part of the Unknown department and can be
reached at ahmed.nagiub@cis.asu.edu.eg.
- 'The final exam for Software Engineering course, offered by the information system
department, from 2020, is available at the following link: [https://drive.google.com/file/d/1qYvsJGm5FWTq9L7TlJOGg85vPHtu7G6d/view'
- source_sentence: Is there a link available for the 2023 Probability & Stats course
exam?
sentences:
- 'The final exam for operating system course, offered by the computer science department,
from 2024, is available at the following link: [https://drive.google.com/file/d/1ITc9Hs3s0sw8SPEfKSAlE-sQTngL5oaL/view?usp=sharing'
- 'The final exam for the Probability & Statistics course, offered by the general
department, from 2023, is available at the following link: [https://drive.google.com/file/d/1kh3KbahqTnCSNwqDyB8iSPSIMQ9B9ZUZ/view?usp=sharing].'
- 'The final exam for computer Architecture and organization course, offered by
the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1BBVB6U8nnEA8sLUlmR3J52TD8kjWlGWM/view?usp=sharing'
- source_sentence: How do I access the final exam for the Digital Image Processing
course from 2016?
sentences:
- 'The final exam for the Statistical Analysis course, offered by the general department,
from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing'
- 'The final exam for Digital Image Processing course, offered by the computer science
department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view'
- 'The final exam for the Probability & Statistics course, offered by the general
department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ai college validation
type: ai-college-validation
metrics:
- type: cosine_accuracy@1
value: 0.55078125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82421875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.890625
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.95703125
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.55078125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27473958333333326
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17812499999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.095703125
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.55078125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82421875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.890625
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.95703125
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7655983040473691
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7029761904761903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7052547923124669
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.66015625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9453125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66015625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31510416666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66015625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9453125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8528799902335868
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8027994791666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8027994791666666
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.66015625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.94140625
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99609375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66015625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3138020833333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19921875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66015625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.94140625
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99609375
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8541928904310672
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8045572916666668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8045572916666667
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.67578125
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9453125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67578125
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31510416666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67578125
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9453125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8605213037068725
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8130208333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8130208333333334
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8643861203886329
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8181640625000001
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8181640625
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8655801956151241
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8196614583333336
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8196614583333333
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.69140625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9609375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.98828125
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69140625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3203125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19765625000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69140625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9609375
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.98828125
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8686343143993309
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8239908854166668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8239908854166667
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.68359375
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.95703125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68359375
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31901041666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68359375
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.95703125
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8655801956151241
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8196614583333336
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8196614583333333
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-distilroberta-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Bo8dady/finetuned-College-embeddings")
# Run inference
sentences = [
'How do I access the final exam for the Digital Image Processing course from 2016?',
'The final exam for Digital Image Processing course, offered by the computer science department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view',
'The final exam for the Statistical Analysis course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5508 |
| cosine_accuracy@3 | 0.8242 |
| cosine_accuracy@5 | 0.8906 |
| cosine_accuracy@10 | 0.957 |
| cosine_precision@1 | 0.5508 |
| cosine_precision@3 | 0.2747 |
| cosine_precision@5 | 0.1781 |
| cosine_precision@10 | 0.0957 |
| cosine_recall@1 | 0.5508 |
| cosine_recall@3 | 0.8242 |
| cosine_recall@5 | 0.8906 |
| cosine_recall@10 | 0.957 |
| **cosine_ndcg@10** | **0.7656** |
| cosine_mrr@10 | 0.703 |
| cosine_map@100 | 0.7053 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6602 |
| cosine_accuracy@3 | 0.9453 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6602 |
| cosine_precision@3 | 0.3151 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6602 |
| cosine_recall@3 | 0.9453 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8529** |
| cosine_mrr@10 | 0.8028 |
| cosine_map@100 | 0.8028 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6602 |
| cosine_accuracy@3 | 0.9414 |
| cosine_accuracy@5 | 0.9961 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6602 |
| cosine_precision@3 | 0.3138 |
| cosine_precision@5 | 0.1992 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6602 |
| cosine_recall@3 | 0.9414 |
| cosine_recall@5 | 0.9961 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8542** |
| cosine_mrr@10 | 0.8046 |
| cosine_map@100 | 0.8046 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6758 |
| cosine_accuracy@3 | 0.9453 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6758 |
| cosine_precision@3 | 0.3151 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6758 |
| cosine_recall@3 | 0.9453 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8605** |
| cosine_mrr@10 | 0.813 |
| cosine_map@100 | 0.813 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6836 |
| cosine_accuracy@3 | 0.957 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6836 |
| cosine_precision@3 | 0.319 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6836 |
| cosine_recall@3 | 0.957 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8644** |
| cosine_mrr@10 | 0.8182 |
| cosine_map@100 | 0.8182 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6836 |
| cosine_accuracy@3 | 0.957 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6836 |
| cosine_precision@3 | 0.319 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6836 |
| cosine_recall@3 | 0.957 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8656** |
| cosine_mrr@10 | 0.8197 |
| cosine_map@100 | 0.8197 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.9609 |
| cosine_accuracy@5 | 0.9883 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.3203 |
| cosine_precision@5 | 0.1977 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.9609 |
| cosine_recall@5 | 0.9883 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8686** |
| cosine_mrr@10 | 0.824 |
| cosine_map@100 | 0.824 |
#### Information Retrieval
* Dataset: `ai-college-validation`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6836 |
| cosine_accuracy@3 | 0.957 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.6836 |
| cosine_precision@3 | 0.319 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.6836 |
| cosine_recall@3 | 0.957 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.8656** |
| cosine_mrr@10 | 0.8197 |
| cosine_map@100 | 0.8197 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,048 training samples
* Columns: Question
and chunk
* Approximate statistics based on the first 1000 samples:
| | Question | chunk |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
Could you share the link to the 2020 Data Structures final exam?
| The final exam for Data Structures course, offered by the general department, from 2020, is available at the following link: [https://drive.google.com/file/d/1U735N5tPHTyXtWgoSp0XI1zo9j2LN2Km/view
|
| Can you provide the exam link for the 2018 Software Engineering course?
| The final exam for Software Engineering course, offered by the computer science department, from 2018, is available at the following link: [https://drive.google.com/file/d/1kqjCVWTBJVhr_JyiTmfrK1BrHy8_tVX2/view
|
| - Who decides if an absence excuse is acceptable for a final exam?
| Topic: Absence from Written Exam
Summary: Unexcused absence from a final exam results in a failing grade (F).
Chunk: "Absence from the written exam
A student who is absent from the final exam for a course without an acceptable excuse from the College Council is considered a failure in the course and has a grade (F)."
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 256 evaluation samples
* Columns: Question
and chunk
* Approximate statistics based on the first 256 samples:
| | Question | chunk |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | How do I get to the final exam for the AI course in 2016?
| The final exam for Artificial Intelligence course, offered by the general department, from 2016, is available at the following link: [https://drive.google.com/file/d/1vaZOQMuqe4qfzPzgvxiSz0rnGxzFwL-F/view?usp=sharing
|
| Can I get the URL for the 2024 Probability and Statistics final exam?
| The final exam for the Probability & Statistics course, offered by the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1lAFwZRcgDl02zKwrFclAvmqr5k9Z_Ct2/view?usp=sharing].
|
| Where can I find the final exam link for the Digital Signal Processing course from 2024?
| The final exam for Digital Signal Processing course, offered by the computer science department, from 2024, is available at the following link: [https://drive.google.com/file/d/1RO0aPoom-TA-qgsopwR9krszD_pQIzfJ/view?usp=sharing
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 1e-05
- `warmup_ratio`: 0.2
- `batch_sampler`: no_duplicates
#### All Hyperparameters