--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2048 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/all-distilroberta-v1 widget: - source_sentence: Can you provide the link to the Discrete Math final exam from 2024? sentences: - 'The final exam for Discrete Math course, offered by the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1pCpnVt6IiOTMlGTYw3sUZ8NEnI3thwO5/view?usp=sharing' - 'The final exam for internet of things course, offered by the computer science department, from 2025, is available at the following link: [https://drive.google.com/file/d/1UjtShx1hFNg8_gB5NsqGDGKAvpkkBfm9/view?usp=sharing' - 'The final exam for the physics1 course, offered by the general department, from 2018, is available at the following link: [https://drive.google.com/file/d/1T-KLo2JW3fLFSu1hT7WtGOnmXFQTqMin/view].' - source_sentence: Can you provide the exam link for the Physics 1 course from 2023? sentences: - 'The final exam for the physics1 course, offered by the general department, from 2023, is available at the following link: [https://drive.google.com/file/d/1TrlV8yBdNHJjGVsDBD6EU2A4G80nU1kV/view?usp=sharing].' - 'The final exam for the Probability & Statistics course, offered by the general department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].' - Dr. Noran el sayed is part of the Unknown department and can be reached at noran.elsayed@cis.asu.edu.eg. - source_sentence: How can I access the final exam for the Software Engineering class from 2015? sentences: - 'The final exam for Software Engineering course, offered by the information system department, from 2015, is available at the following link: [https://drive.google.com/file/d/1ve8sh5HhCeQqr_swbADxYiYvJRkFBiAi/view' - Dr. Ahmed Soliman (Ahmed Nagiub) is part of the Unknown department and can be reached at ahmed.nagiub@cis.asu.edu.eg. - 'The final exam for Software Engineering course, offered by the information system department, from 2020, is available at the following link: [https://drive.google.com/file/d/1qYvsJGm5FWTq9L7TlJOGg85vPHtu7G6d/view' - source_sentence: Is there a link available for the 2023 Probability & Stats course exam? sentences: - 'The final exam for operating system course, offered by the computer science department, from 2024, is available at the following link: [https://drive.google.com/file/d/1ITc9Hs3s0sw8SPEfKSAlE-sQTngL5oaL/view?usp=sharing' - 'The final exam for the Probability & Statistics course, offered by the general department, from 2023, is available at the following link: [https://drive.google.com/file/d/1kh3KbahqTnCSNwqDyB8iSPSIMQ9B9ZUZ/view?usp=sharing].' - 'The final exam for computer Architecture and organization course, offered by the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1BBVB6U8nnEA8sLUlmR3J52TD8kjWlGWM/view?usp=sharing' - source_sentence: How do I access the final exam for the Digital Image Processing course from 2016? sentences: - 'The final exam for the Statistical Analysis course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing' - 'The final exam for Digital Image Processing course, offered by the computer science department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view' - 'The final exam for the Probability & Statistics course, offered by the general department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1 results: - task: type: information-retrieval name: Information Retrieval dataset: name: ai college validation type: ai-college-validation metrics: - type: cosine_accuracy@1 value: 0.55078125 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.82421875 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.890625 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.95703125 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.55078125 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27473958333333326 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17812499999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.095703125 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.55078125 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.82421875 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.890625 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.95703125 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7655983040473691 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7029761904761903 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7052547923124669 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.66015625 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9453125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.66015625 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31510416666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.66015625 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9453125 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8528799902335868 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8027994791666668 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8027994791666666 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.66015625 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.94140625 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.99609375 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.66015625 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3138020833333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19921875 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.66015625 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.94140625 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.99609375 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8541928904310672 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8045572916666668 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8045572916666667 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.67578125 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9453125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.67578125 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31510416666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.67578125 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9453125 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8605213037068725 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8130208333333334 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8130208333333334 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.68359375 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.95703125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.68359375 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31901041666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.68359375 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.95703125 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8643861203886329 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8181640625000001 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8181640625 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.68359375 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.95703125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.68359375 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31901041666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.68359375 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.95703125 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8655801956151241 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8196614583333336 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8196614583333333 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.69140625 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9609375 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.98828125 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.69140625 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3203125 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19765625000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.69140625 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9609375 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.98828125 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8686343143993309 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8239908854166668 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8239908854166667 name: Cosine Map@100 - type: cosine_accuracy@1 value: 0.68359375 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.95703125 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.68359375 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31901041666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.68359375 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.95703125 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8655801956151241 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8196614583333336 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8196614583333333 name: Cosine Map@100 --- # SentenceTransformer based on sentence-transformers/all-distilroberta-v1 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Bo8dady/finetuned-College-embeddings") # Run inference sentences = [ 'How do I access the final exam for the Digital Image Processing course from 2016?', 'The final exam for Digital Image Processing course, offered by the computer science department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view', 'The final exam for the Statistical Analysis course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5508 | | cosine_accuracy@3 | 0.8242 | | cosine_accuracy@5 | 0.8906 | | cosine_accuracy@10 | 0.957 | | cosine_precision@1 | 0.5508 | | cosine_precision@3 | 0.2747 | | cosine_precision@5 | 0.1781 | | cosine_precision@10 | 0.0957 | | cosine_recall@1 | 0.5508 | | cosine_recall@3 | 0.8242 | | cosine_recall@5 | 0.8906 | | cosine_recall@10 | 0.957 | | **cosine_ndcg@10** | **0.7656** | | cosine_mrr@10 | 0.703 | | cosine_map@100 | 0.7053 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6602 | | cosine_accuracy@3 | 0.9453 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6602 | | cosine_precision@3 | 0.3151 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6602 | | cosine_recall@3 | 0.9453 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8529** | | cosine_mrr@10 | 0.8028 | | cosine_map@100 | 0.8028 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6602 | | cosine_accuracy@3 | 0.9414 | | cosine_accuracy@5 | 0.9961 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6602 | | cosine_precision@3 | 0.3138 | | cosine_precision@5 | 0.1992 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6602 | | cosine_recall@3 | 0.9414 | | cosine_recall@5 | 0.9961 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8542** | | cosine_mrr@10 | 0.8046 | | cosine_map@100 | 0.8046 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6758 | | cosine_accuracy@3 | 0.9453 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6758 | | cosine_precision@3 | 0.3151 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6758 | | cosine_recall@3 | 0.9453 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8605** | | cosine_mrr@10 | 0.813 | | cosine_map@100 | 0.813 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6836 | | cosine_accuracy@3 | 0.957 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6836 | | cosine_precision@3 | 0.319 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6836 | | cosine_recall@3 | 0.957 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8644** | | cosine_mrr@10 | 0.8182 | | cosine_map@100 | 0.8182 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6836 | | cosine_accuracy@3 | 0.957 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6836 | | cosine_precision@3 | 0.319 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6836 | | cosine_recall@3 | 0.957 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8656** | | cosine_mrr@10 | 0.8197 | | cosine_map@100 | 0.8197 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6914 | | cosine_accuracy@3 | 0.9609 | | cosine_accuracy@5 | 0.9883 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6914 | | cosine_precision@3 | 0.3203 | | cosine_precision@5 | 0.1977 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6914 | | cosine_recall@3 | 0.9609 | | cosine_recall@5 | 0.9883 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8686** | | cosine_mrr@10 | 0.824 | | cosine_map@100 | 0.824 | #### Information Retrieval * Dataset: `ai-college-validation` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6836 | | cosine_accuracy@3 | 0.957 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6836 | | cosine_precision@3 | 0.319 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.6836 | | cosine_recall@3 | 0.957 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.8656** | | cosine_mrr@10 | 0.8197 | | cosine_map@100 | 0.8197 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 2,048 training samples * Columns: Question and chunk * Approximate statistics based on the first 1000 samples: | | Question | chunk | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | Question | chunk | |:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Could you share the link to the 2020 Data Structures final exam? | The final exam for Data Structures course, offered by the general department, from 2020, is available at the following link: [https://drive.google.com/file/d/1U735N5tPHTyXtWgoSp0XI1zo9j2LN2Km/view | | Can you provide the exam link for the 2018 Software Engineering course? | The final exam for Software Engineering course, offered by the computer science department, from 2018, is available at the following link: [https://drive.google.com/file/d/1kqjCVWTBJVhr_JyiTmfrK1BrHy8_tVX2/view | | - Who decides if an absence excuse is acceptable for a final exam? | Topic: Absence from Written Exam
Summary: Unexcused absence from a final exam results in a failing grade (F).
Chunk: "Absence from the written exam
A student who is absent from the final exam for a course without an acceptable excuse from the College Council is considered a failure in the course and has a grade (F)."
| * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 256 evaluation samples * Columns: Question and chunk * Approximate statistics based on the first 256 samples: | | Question | chunk | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | Question | chunk | |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | How do I get to the final exam for the AI course in 2016? | The final exam for Artificial Intelligence course, offered by the general department, from 2016, is available at the following link: [https://drive.google.com/file/d/1vaZOQMuqe4qfzPzgvxiSz0rnGxzFwL-F/view?usp=sharing | | Can I get the URL for the 2024 Probability and Statistics final exam? | The final exam for the Probability & Statistics course, offered by the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1lAFwZRcgDl02zKwrFclAvmqr5k9Z_Ct2/view?usp=sharing]. | | Where can I find the final exam link for the Digital Signal Processing course from 2024? | The final exam for Digital Signal Processing course, offered by the computer science department, from 2024, is available at the following link: [https://drive.google.com/file/d/1RO0aPoom-TA-qgsopwR9krszD_pQIzfJ/view?usp=sharing | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 1e-05 - `warmup_ratio`: 0.2 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | ai-college-validation_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:------------------------------------:| | 0 | 0 | - | - | 0.7656 | | 1.0 | 64 | - | - | 0.8542 | | 1.5469 | 100 | 0.0359 | 0.0239 | 0.8529 | | 2.9688 | 192 | - | - | 0.8575 | | 1.5469 | 100 | 0.0126 | 0.0306 | 0.8621 | | 3.0781 | 200 | 0.0155 | 0.0267 | 0.8575 | | 4.625 | 300 | 0.0195 | 0.0287 | 0.8542 | | 4.9375 | 320 | - | - | 0.8556 | | 1.5469 | 100 | 0.0034 | 0.0289 | 0.8605 | | 2.9688 | 192 | - | - | 0.8615 | | 1.5469 | 100 | 0.0014 | 0.0312 | 0.8644 | | 2.9688 | 192 | - | - | 0.8656 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.0 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```