Bo8dady commited on
Commit
6b8bb98
·
verified ·
1 Parent(s): 93b3863

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,987 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2048
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-distilroberta-v1
10
+ widget:
11
+ - source_sentence: Can you provide the link to the Discrete Math final exam from 2024?
12
+ sentences:
13
+ - 'The final exam for Discrete Math course, offered by the general department, from
14
+ 2024, is available at the following link: [https://drive.google.com/file/d/1pCpnVt6IiOTMlGTYw3sUZ8NEnI3thwO5/view?usp=sharing'
15
+ - 'The final exam for internet of things course, offered by the computer science
16
+ department, from 2025, is available at the following link: [https://drive.google.com/file/d/1UjtShx1hFNg8_gB5NsqGDGKAvpkkBfm9/view?usp=sharing'
17
+ - 'The final exam for the physics1 course, offered by the general department, from
18
+ 2018, is available at the following link: [https://drive.google.com/file/d/1T-KLo2JW3fLFSu1hT7WtGOnmXFQTqMin/view].'
19
+ - source_sentence: Can you provide the exam link for the Physics 1 course from 2023?
20
+ sentences:
21
+ - 'The final exam for the physics1 course, offered by the general department, from
22
+ 2023, is available at the following link: [https://drive.google.com/file/d/1TrlV8yBdNHJjGVsDBD6EU2A4G80nU1kV/view?usp=sharing].'
23
+ - 'The final exam for the Probability & Statistics course, offered by the general
24
+ department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].'
25
+ - Dr. Noran el sayed is part of the Unknown department and can be reached at [email protected].
26
+ - source_sentence: How can I access the final exam for the Software Engineering class
27
+ from 2015?
28
+ sentences:
29
+ - 'The final exam for Software Engineering course, offered by the information system
30
+ department, from 2015, is available at the following link: [https://drive.google.com/file/d/1ve8sh5HhCeQqr_swbADxYiYvJRkFBiAi/view'
31
+ - Dr. Ahmed Soliman (Ahmed Nagiub) is part of the Unknown department and can be
32
+ reached at [email protected].
33
+ - 'The final exam for Software Engineering course, offered by the information system
34
+ department, from 2020, is available at the following link: [https://drive.google.com/file/d/1qYvsJGm5FWTq9L7TlJOGg85vPHtu7G6d/view'
35
+ - source_sentence: Is there a link available for the 2023 Probability & Stats course
36
+ exam?
37
+ sentences:
38
+ - 'The final exam for operating system course, offered by the computer science department,
39
+ from 2024, is available at the following link: [https://drive.google.com/file/d/1ITc9Hs3s0sw8SPEfKSAlE-sQTngL5oaL/view?usp=sharing'
40
+ - 'The final exam for the Probability & Statistics course, offered by the general
41
+ department, from 2023, is available at the following link: [https://drive.google.com/file/d/1kh3KbahqTnCSNwqDyB8iSPSIMQ9B9ZUZ/view?usp=sharing].'
42
+ - 'The final exam for computer Architecture and organization course, offered by
43
+ the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1BBVB6U8nnEA8sLUlmR3J52TD8kjWlGWM/view?usp=sharing'
44
+ - source_sentence: How do I access the final exam for the Digital Image Processing
45
+ course from 2016?
46
+ sentences:
47
+ - 'The final exam for the Statistical Analysis course, offered by the general department,
48
+ from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing'
49
+ - 'The final exam for Digital Image Processing course, offered by the computer science
50
+ department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view'
51
+ - 'The final exam for the Probability & Statistics course, offered by the general
52
+ department, from 2021, is available at the following link: [https://drive.google.com/drive/u/2/folders/1c2w87tPBcFazujOmQ1ZKmiuR__EIsQd3].'
53
+ pipeline_tag: sentence-similarity
54
+ library_name: sentence-transformers
55
+ metrics:
56
+ - cosine_accuracy@1
57
+ - cosine_accuracy@3
58
+ - cosine_accuracy@5
59
+ - cosine_accuracy@10
60
+ - cosine_precision@1
61
+ - cosine_precision@3
62
+ - cosine_precision@5
63
+ - cosine_precision@10
64
+ - cosine_recall@1
65
+ - cosine_recall@3
66
+ - cosine_recall@5
67
+ - cosine_recall@10
68
+ - cosine_ndcg@10
69
+ - cosine_mrr@10
70
+ - cosine_map@100
71
+ model-index:
72
+ - name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
73
+ results:
74
+ - task:
75
+ type: information-retrieval
76
+ name: Information Retrieval
77
+ dataset:
78
+ name: ai college validation
79
+ type: ai-college-validation
80
+ metrics:
81
+ - type: cosine_accuracy@1
82
+ value: 0.55078125
83
+ name: Cosine Accuracy@1
84
+ - type: cosine_accuracy@3
85
+ value: 0.82421875
86
+ name: Cosine Accuracy@3
87
+ - type: cosine_accuracy@5
88
+ value: 0.890625
89
+ name: Cosine Accuracy@5
90
+ - type: cosine_accuracy@10
91
+ value: 0.95703125
92
+ name: Cosine Accuracy@10
93
+ - type: cosine_precision@1
94
+ value: 0.55078125
95
+ name: Cosine Precision@1
96
+ - type: cosine_precision@3
97
+ value: 0.27473958333333326
98
+ name: Cosine Precision@3
99
+ - type: cosine_precision@5
100
+ value: 0.17812499999999998
101
+ name: Cosine Precision@5
102
+ - type: cosine_precision@10
103
+ value: 0.095703125
104
+ name: Cosine Precision@10
105
+ - type: cosine_recall@1
106
+ value: 0.55078125
107
+ name: Cosine Recall@1
108
+ - type: cosine_recall@3
109
+ value: 0.82421875
110
+ name: Cosine Recall@3
111
+ - type: cosine_recall@5
112
+ value: 0.890625
113
+ name: Cosine Recall@5
114
+ - type: cosine_recall@10
115
+ value: 0.95703125
116
+ name: Cosine Recall@10
117
+ - type: cosine_ndcg@10
118
+ value: 0.7655983040473691
119
+ name: Cosine Ndcg@10
120
+ - type: cosine_mrr@10
121
+ value: 0.7029761904761903
122
+ name: Cosine Mrr@10
123
+ - type: cosine_map@100
124
+ value: 0.7052547923124669
125
+ name: Cosine Map@100
126
+ - type: cosine_accuracy@1
127
+ value: 0.66015625
128
+ name: Cosine Accuracy@1
129
+ - type: cosine_accuracy@3
130
+ value: 0.9453125
131
+ name: Cosine Accuracy@3
132
+ - type: cosine_accuracy@5
133
+ value: 1.0
134
+ name: Cosine Accuracy@5
135
+ - type: cosine_accuracy@10
136
+ value: 1.0
137
+ name: Cosine Accuracy@10
138
+ - type: cosine_precision@1
139
+ value: 0.66015625
140
+ name: Cosine Precision@1
141
+ - type: cosine_precision@3
142
+ value: 0.31510416666666663
143
+ name: Cosine Precision@3
144
+ - type: cosine_precision@5
145
+ value: 0.2
146
+ name: Cosine Precision@5
147
+ - type: cosine_precision@10
148
+ value: 0.1
149
+ name: Cosine Precision@10
150
+ - type: cosine_recall@1
151
+ value: 0.66015625
152
+ name: Cosine Recall@1
153
+ - type: cosine_recall@3
154
+ value: 0.9453125
155
+ name: Cosine Recall@3
156
+ - type: cosine_recall@5
157
+ value: 1.0
158
+ name: Cosine Recall@5
159
+ - type: cosine_recall@10
160
+ value: 1.0
161
+ name: Cosine Recall@10
162
+ - type: cosine_ndcg@10
163
+ value: 0.8528799902335868
164
+ name: Cosine Ndcg@10
165
+ - type: cosine_mrr@10
166
+ value: 0.8027994791666668
167
+ name: Cosine Mrr@10
168
+ - type: cosine_map@100
169
+ value: 0.8027994791666666
170
+ name: Cosine Map@100
171
+ - type: cosine_accuracy@1
172
+ value: 0.66015625
173
+ name: Cosine Accuracy@1
174
+ - type: cosine_accuracy@3
175
+ value: 0.94140625
176
+ name: Cosine Accuracy@3
177
+ - type: cosine_accuracy@5
178
+ value: 0.99609375
179
+ name: Cosine Accuracy@5
180
+ - type: cosine_accuracy@10
181
+ value: 1.0
182
+ name: Cosine Accuracy@10
183
+ - type: cosine_precision@1
184
+ value: 0.66015625
185
+ name: Cosine Precision@1
186
+ - type: cosine_precision@3
187
+ value: 0.3138020833333333
188
+ name: Cosine Precision@3
189
+ - type: cosine_precision@5
190
+ value: 0.19921875
191
+ name: Cosine Precision@5
192
+ - type: cosine_precision@10
193
+ value: 0.1
194
+ name: Cosine Precision@10
195
+ - type: cosine_recall@1
196
+ value: 0.66015625
197
+ name: Cosine Recall@1
198
+ - type: cosine_recall@3
199
+ value: 0.94140625
200
+ name: Cosine Recall@3
201
+ - type: cosine_recall@5
202
+ value: 0.99609375
203
+ name: Cosine Recall@5
204
+ - type: cosine_recall@10
205
+ value: 1.0
206
+ name: Cosine Recall@10
207
+ - type: cosine_ndcg@10
208
+ value: 0.8541928904310672
209
+ name: Cosine Ndcg@10
210
+ - type: cosine_mrr@10
211
+ value: 0.8045572916666668
212
+ name: Cosine Mrr@10
213
+ - type: cosine_map@100
214
+ value: 0.8045572916666667
215
+ name: Cosine Map@100
216
+ - type: cosine_accuracy@1
217
+ value: 0.67578125
218
+ name: Cosine Accuracy@1
219
+ - type: cosine_accuracy@3
220
+ value: 0.9453125
221
+ name: Cosine Accuracy@3
222
+ - type: cosine_accuracy@5
223
+ value: 1.0
224
+ name: Cosine Accuracy@5
225
+ - type: cosine_accuracy@10
226
+ value: 1.0
227
+ name: Cosine Accuracy@10
228
+ - type: cosine_precision@1
229
+ value: 0.67578125
230
+ name: Cosine Precision@1
231
+ - type: cosine_precision@3
232
+ value: 0.31510416666666663
233
+ name: Cosine Precision@3
234
+ - type: cosine_precision@5
235
+ value: 0.2
236
+ name: Cosine Precision@5
237
+ - type: cosine_precision@10
238
+ value: 0.1
239
+ name: Cosine Precision@10
240
+ - type: cosine_recall@1
241
+ value: 0.67578125
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@3
244
+ value: 0.9453125
245
+ name: Cosine Recall@3
246
+ - type: cosine_recall@5
247
+ value: 1.0
248
+ name: Cosine Recall@5
249
+ - type: cosine_recall@10
250
+ value: 1.0
251
+ name: Cosine Recall@10
252
+ - type: cosine_ndcg@10
253
+ value: 0.8605213037068725
254
+ name: Cosine Ndcg@10
255
+ - type: cosine_mrr@10
256
+ value: 0.8130208333333334
257
+ name: Cosine Mrr@10
258
+ - type: cosine_map@100
259
+ value: 0.8130208333333334
260
+ name: Cosine Map@100
261
+ - type: cosine_accuracy@1
262
+ value: 0.68359375
263
+ name: Cosine Accuracy@1
264
+ - type: cosine_accuracy@3
265
+ value: 0.95703125
266
+ name: Cosine Accuracy@3
267
+ - type: cosine_accuracy@5
268
+ value: 1.0
269
+ name: Cosine Accuracy@5
270
+ - type: cosine_accuracy@10
271
+ value: 1.0
272
+ name: Cosine Accuracy@10
273
+ - type: cosine_precision@1
274
+ value: 0.68359375
275
+ name: Cosine Precision@1
276
+ - type: cosine_precision@3
277
+ value: 0.31901041666666663
278
+ name: Cosine Precision@3
279
+ - type: cosine_precision@5
280
+ value: 0.2
281
+ name: Cosine Precision@5
282
+ - type: cosine_precision@10
283
+ value: 0.1
284
+ name: Cosine Precision@10
285
+ - type: cosine_recall@1
286
+ value: 0.68359375
287
+ name: Cosine Recall@1
288
+ - type: cosine_recall@3
289
+ value: 0.95703125
290
+ name: Cosine Recall@3
291
+ - type: cosine_recall@5
292
+ value: 1.0
293
+ name: Cosine Recall@5
294
+ - type: cosine_recall@10
295
+ value: 1.0
296
+ name: Cosine Recall@10
297
+ - type: cosine_ndcg@10
298
+ value: 0.8643861203886329
299
+ name: Cosine Ndcg@10
300
+ - type: cosine_mrr@10
301
+ value: 0.8181640625000001
302
+ name: Cosine Mrr@10
303
+ - type: cosine_map@100
304
+ value: 0.8181640625
305
+ name: Cosine Map@100
306
+ - type: cosine_accuracy@1
307
+ value: 0.68359375
308
+ name: Cosine Accuracy@1
309
+ - type: cosine_accuracy@3
310
+ value: 0.95703125
311
+ name: Cosine Accuracy@3
312
+ - type: cosine_accuracy@5
313
+ value: 1.0
314
+ name: Cosine Accuracy@5
315
+ - type: cosine_accuracy@10
316
+ value: 1.0
317
+ name: Cosine Accuracy@10
318
+ - type: cosine_precision@1
319
+ value: 0.68359375
320
+ name: Cosine Precision@1
321
+ - type: cosine_precision@3
322
+ value: 0.31901041666666663
323
+ name: Cosine Precision@3
324
+ - type: cosine_precision@5
325
+ value: 0.2
326
+ name: Cosine Precision@5
327
+ - type: cosine_precision@10
328
+ value: 0.1
329
+ name: Cosine Precision@10
330
+ - type: cosine_recall@1
331
+ value: 0.68359375
332
+ name: Cosine Recall@1
333
+ - type: cosine_recall@3
334
+ value: 0.95703125
335
+ name: Cosine Recall@3
336
+ - type: cosine_recall@5
337
+ value: 1.0
338
+ name: Cosine Recall@5
339
+ - type: cosine_recall@10
340
+ value: 1.0
341
+ name: Cosine Recall@10
342
+ - type: cosine_ndcg@10
343
+ value: 0.8655801956151241
344
+ name: Cosine Ndcg@10
345
+ - type: cosine_mrr@10
346
+ value: 0.8196614583333336
347
+ name: Cosine Mrr@10
348
+ - type: cosine_map@100
349
+ value: 0.8196614583333333
350
+ name: Cosine Map@100
351
+ - type: cosine_accuracy@1
352
+ value: 0.69140625
353
+ name: Cosine Accuracy@1
354
+ - type: cosine_accuracy@3
355
+ value: 0.9609375
356
+ name: Cosine Accuracy@3
357
+ - type: cosine_accuracy@5
358
+ value: 0.98828125
359
+ name: Cosine Accuracy@5
360
+ - type: cosine_accuracy@10
361
+ value: 1.0
362
+ name: Cosine Accuracy@10
363
+ - type: cosine_precision@1
364
+ value: 0.69140625
365
+ name: Cosine Precision@1
366
+ - type: cosine_precision@3
367
+ value: 0.3203125
368
+ name: Cosine Precision@3
369
+ - type: cosine_precision@5
370
+ value: 0.19765625000000003
371
+ name: Cosine Precision@5
372
+ - type: cosine_precision@10
373
+ value: 0.1
374
+ name: Cosine Precision@10
375
+ - type: cosine_recall@1
376
+ value: 0.69140625
377
+ name: Cosine Recall@1
378
+ - type: cosine_recall@3
379
+ value: 0.9609375
380
+ name: Cosine Recall@3
381
+ - type: cosine_recall@5
382
+ value: 0.98828125
383
+ name: Cosine Recall@5
384
+ - type: cosine_recall@10
385
+ value: 1.0
386
+ name: Cosine Recall@10
387
+ - type: cosine_ndcg@10
388
+ value: 0.8686343143993309
389
+ name: Cosine Ndcg@10
390
+ - type: cosine_mrr@10
391
+ value: 0.8239908854166668
392
+ name: Cosine Mrr@10
393
+ - type: cosine_map@100
394
+ value: 0.8239908854166667
395
+ name: Cosine Map@100
396
+ - type: cosine_accuracy@1
397
+ value: 0.68359375
398
+ name: Cosine Accuracy@1
399
+ - type: cosine_accuracy@3
400
+ value: 0.95703125
401
+ name: Cosine Accuracy@3
402
+ - type: cosine_accuracy@5
403
+ value: 1.0
404
+ name: Cosine Accuracy@5
405
+ - type: cosine_accuracy@10
406
+ value: 1.0
407
+ name: Cosine Accuracy@10
408
+ - type: cosine_precision@1
409
+ value: 0.68359375
410
+ name: Cosine Precision@1
411
+ - type: cosine_precision@3
412
+ value: 0.31901041666666663
413
+ name: Cosine Precision@3
414
+ - type: cosine_precision@5
415
+ value: 0.2
416
+ name: Cosine Precision@5
417
+ - type: cosine_precision@10
418
+ value: 0.1
419
+ name: Cosine Precision@10
420
+ - type: cosine_recall@1
421
+ value: 0.68359375
422
+ name: Cosine Recall@1
423
+ - type: cosine_recall@3
424
+ value: 0.95703125
425
+ name: Cosine Recall@3
426
+ - type: cosine_recall@5
427
+ value: 1.0
428
+ name: Cosine Recall@5
429
+ - type: cosine_recall@10
430
+ value: 1.0
431
+ name: Cosine Recall@10
432
+ - type: cosine_ndcg@10
433
+ value: 0.8655801956151241
434
+ name: Cosine Ndcg@10
435
+ - type: cosine_mrr@10
436
+ value: 0.8196614583333336
437
+ name: Cosine Mrr@10
438
+ - type: cosine_map@100
439
+ value: 0.8196614583333333
440
+ name: Cosine Map@100
441
+ ---
442
+
443
+ # SentenceTransformer based on sentence-transformers/all-distilroberta-v1
444
+
445
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
446
+
447
+ ## Model Details
448
+
449
+ ### Model Description
450
+ - **Model Type:** Sentence Transformer
451
+ - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 842eaed40bee4d61673a81c92d5689a8fed7a09f -->
452
+ - **Maximum Sequence Length:** 512 tokens
453
+ - **Output Dimensionality:** 768 dimensions
454
+ - **Similarity Function:** Cosine Similarity
455
+ <!-- - **Training Dataset:** Unknown -->
456
+ <!-- - **Language:** Unknown -->
457
+ <!-- - **License:** Unknown -->
458
+
459
+ ### Model Sources
460
+
461
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
462
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
463
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
464
+
465
+ ### Full Model Architecture
466
+
467
+ ```
468
+ SentenceTransformer(
469
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
470
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
471
+ (2): Normalize()
472
+ )
473
+ ```
474
+
475
+ ## Usage
476
+
477
+ ### Direct Usage (Sentence Transformers)
478
+
479
+ First install the Sentence Transformers library:
480
+
481
+ ```bash
482
+ pip install -U sentence-transformers
483
+ ```
484
+
485
+ Then you can load this model and run inference.
486
+ ```python
487
+ from sentence_transformers import SentenceTransformer
488
+
489
+ # Download from the 🤗 Hub
490
+ model = SentenceTransformer("Bo8dady/finetuned-College-embeddings")
491
+ # Run inference
492
+ sentences = [
493
+ 'How do I access the final exam for the Digital Image Processing course from 2016?',
494
+ 'The final exam for Digital Image Processing course, offered by the computer science department, from 2016, is available at the following link: [https://drive.google.com/file/d/1dUDU-VM5_c7Wst98iTC83GhudfNL-r_G/view',
495
+ 'The final exam for the Statistical Analysis course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/14Fi9uMdy0JRw7Wp2j1-2eNoRd5CwS_ng/view?usp=sharing',
496
+ ]
497
+ embeddings = model.encode(sentences)
498
+ print(embeddings.shape)
499
+ # [3, 768]
500
+
501
+ # Get the similarity scores for the embeddings
502
+ similarities = model.similarity(embeddings, embeddings)
503
+ print(similarities.shape)
504
+ # [3, 3]
505
+ ```
506
+
507
+ <!--
508
+ ### Direct Usage (Transformers)
509
+
510
+ <details><summary>Click to see the direct usage in Transformers</summary>
511
+
512
+ </details>
513
+ -->
514
+
515
+ <!--
516
+ ### Downstream Usage (Sentence Transformers)
517
+
518
+ You can finetune this model on your own dataset.
519
+
520
+ <details><summary>Click to expand</summary>
521
+
522
+ </details>
523
+ -->
524
+
525
+ <!--
526
+ ### Out-of-Scope Use
527
+
528
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
529
+ -->
530
+
531
+ ## Evaluation
532
+
533
+ ### Metrics
534
+
535
+ #### Information Retrieval
536
+
537
+ * Dataset: `ai-college-validation`
538
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
539
+
540
+ | Metric | Value |
541
+ |:--------------------|:-----------|
542
+ | cosine_accuracy@1 | 0.5508 |
543
+ | cosine_accuracy@3 | 0.8242 |
544
+ | cosine_accuracy@5 | 0.8906 |
545
+ | cosine_accuracy@10 | 0.957 |
546
+ | cosine_precision@1 | 0.5508 |
547
+ | cosine_precision@3 | 0.2747 |
548
+ | cosine_precision@5 | 0.1781 |
549
+ | cosine_precision@10 | 0.0957 |
550
+ | cosine_recall@1 | 0.5508 |
551
+ | cosine_recall@3 | 0.8242 |
552
+ | cosine_recall@5 | 0.8906 |
553
+ | cosine_recall@10 | 0.957 |
554
+ | **cosine_ndcg@10** | **0.7656** |
555
+ | cosine_mrr@10 | 0.703 |
556
+ | cosine_map@100 | 0.7053 |
557
+
558
+ #### Information Retrieval
559
+
560
+ * Dataset: `ai-college-validation`
561
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
562
+
563
+ | Metric | Value |
564
+ |:--------------------|:-----------|
565
+ | cosine_accuracy@1 | 0.6602 |
566
+ | cosine_accuracy@3 | 0.9453 |
567
+ | cosine_accuracy@5 | 1.0 |
568
+ | cosine_accuracy@10 | 1.0 |
569
+ | cosine_precision@1 | 0.6602 |
570
+ | cosine_precision@3 | 0.3151 |
571
+ | cosine_precision@5 | 0.2 |
572
+ | cosine_precision@10 | 0.1 |
573
+ | cosine_recall@1 | 0.6602 |
574
+ | cosine_recall@3 | 0.9453 |
575
+ | cosine_recall@5 | 1.0 |
576
+ | cosine_recall@10 | 1.0 |
577
+ | **cosine_ndcg@10** | **0.8529** |
578
+ | cosine_mrr@10 | 0.8028 |
579
+ | cosine_map@100 | 0.8028 |
580
+
581
+ #### Information Retrieval
582
+
583
+ * Dataset: `ai-college-validation`
584
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
585
+
586
+ | Metric | Value |
587
+ |:--------------------|:-----------|
588
+ | cosine_accuracy@1 | 0.6602 |
589
+ | cosine_accuracy@3 | 0.9414 |
590
+ | cosine_accuracy@5 | 0.9961 |
591
+ | cosine_accuracy@10 | 1.0 |
592
+ | cosine_precision@1 | 0.6602 |
593
+ | cosine_precision@3 | 0.3138 |
594
+ | cosine_precision@5 | 0.1992 |
595
+ | cosine_precision@10 | 0.1 |
596
+ | cosine_recall@1 | 0.6602 |
597
+ | cosine_recall@3 | 0.9414 |
598
+ | cosine_recall@5 | 0.9961 |
599
+ | cosine_recall@10 | 1.0 |
600
+ | **cosine_ndcg@10** | **0.8542** |
601
+ | cosine_mrr@10 | 0.8046 |
602
+ | cosine_map@100 | 0.8046 |
603
+
604
+ #### Information Retrieval
605
+
606
+ * Dataset: `ai-college-validation`
607
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
608
+
609
+ | Metric | Value |
610
+ |:--------------------|:-----------|
611
+ | cosine_accuracy@1 | 0.6758 |
612
+ | cosine_accuracy@3 | 0.9453 |
613
+ | cosine_accuracy@5 | 1.0 |
614
+ | cosine_accuracy@10 | 1.0 |
615
+ | cosine_precision@1 | 0.6758 |
616
+ | cosine_precision@3 | 0.3151 |
617
+ | cosine_precision@5 | 0.2 |
618
+ | cosine_precision@10 | 0.1 |
619
+ | cosine_recall@1 | 0.6758 |
620
+ | cosine_recall@3 | 0.9453 |
621
+ | cosine_recall@5 | 1.0 |
622
+ | cosine_recall@10 | 1.0 |
623
+ | **cosine_ndcg@10** | **0.8605** |
624
+ | cosine_mrr@10 | 0.813 |
625
+ | cosine_map@100 | 0.813 |
626
+
627
+ #### Information Retrieval
628
+
629
+ * Dataset: `ai-college-validation`
630
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
631
+
632
+ | Metric | Value |
633
+ |:--------------------|:-----------|
634
+ | cosine_accuracy@1 | 0.6836 |
635
+ | cosine_accuracy@3 | 0.957 |
636
+ | cosine_accuracy@5 | 1.0 |
637
+ | cosine_accuracy@10 | 1.0 |
638
+ | cosine_precision@1 | 0.6836 |
639
+ | cosine_precision@3 | 0.319 |
640
+ | cosine_precision@5 | 0.2 |
641
+ | cosine_precision@10 | 0.1 |
642
+ | cosine_recall@1 | 0.6836 |
643
+ | cosine_recall@3 | 0.957 |
644
+ | cosine_recall@5 | 1.0 |
645
+ | cosine_recall@10 | 1.0 |
646
+ | **cosine_ndcg@10** | **0.8644** |
647
+ | cosine_mrr@10 | 0.8182 |
648
+ | cosine_map@100 | 0.8182 |
649
+
650
+ #### Information Retrieval
651
+
652
+ * Dataset: `ai-college-validation`
653
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
654
+
655
+ | Metric | Value |
656
+ |:--------------------|:-----------|
657
+ | cosine_accuracy@1 | 0.6836 |
658
+ | cosine_accuracy@3 | 0.957 |
659
+ | cosine_accuracy@5 | 1.0 |
660
+ | cosine_accuracy@10 | 1.0 |
661
+ | cosine_precision@1 | 0.6836 |
662
+ | cosine_precision@3 | 0.319 |
663
+ | cosine_precision@5 | 0.2 |
664
+ | cosine_precision@10 | 0.1 |
665
+ | cosine_recall@1 | 0.6836 |
666
+ | cosine_recall@3 | 0.957 |
667
+ | cosine_recall@5 | 1.0 |
668
+ | cosine_recall@10 | 1.0 |
669
+ | **cosine_ndcg@10** | **0.8656** |
670
+ | cosine_mrr@10 | 0.8197 |
671
+ | cosine_map@100 | 0.8197 |
672
+
673
+ #### Information Retrieval
674
+
675
+ * Dataset: `ai-college-validation`
676
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
677
+
678
+ | Metric | Value |
679
+ |:--------------------|:-----------|
680
+ | cosine_accuracy@1 | 0.6914 |
681
+ | cosine_accuracy@3 | 0.9609 |
682
+ | cosine_accuracy@5 | 0.9883 |
683
+ | cosine_accuracy@10 | 1.0 |
684
+ | cosine_precision@1 | 0.6914 |
685
+ | cosine_precision@3 | 0.3203 |
686
+ | cosine_precision@5 | 0.1977 |
687
+ | cosine_precision@10 | 0.1 |
688
+ | cosine_recall@1 | 0.6914 |
689
+ | cosine_recall@3 | 0.9609 |
690
+ | cosine_recall@5 | 0.9883 |
691
+ | cosine_recall@10 | 1.0 |
692
+ | **cosine_ndcg@10** | **0.8686** |
693
+ | cosine_mrr@10 | 0.824 |
694
+ | cosine_map@100 | 0.824 |
695
+
696
+ #### Information Retrieval
697
+
698
+ * Dataset: `ai-college-validation`
699
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
700
+
701
+ | Metric | Value |
702
+ |:--------------------|:-----------|
703
+ | cosine_accuracy@1 | 0.6836 |
704
+ | cosine_accuracy@3 | 0.957 |
705
+ | cosine_accuracy@5 | 1.0 |
706
+ | cosine_accuracy@10 | 1.0 |
707
+ | cosine_precision@1 | 0.6836 |
708
+ | cosine_precision@3 | 0.319 |
709
+ | cosine_precision@5 | 0.2 |
710
+ | cosine_precision@10 | 0.1 |
711
+ | cosine_recall@1 | 0.6836 |
712
+ | cosine_recall@3 | 0.957 |
713
+ | cosine_recall@5 | 1.0 |
714
+ | cosine_recall@10 | 1.0 |
715
+ | **cosine_ndcg@10** | **0.8656** |
716
+ | cosine_mrr@10 | 0.8197 |
717
+ | cosine_map@100 | 0.8197 |
718
+
719
+ <!--
720
+ ## Bias, Risks and Limitations
721
+
722
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
723
+ -->
724
+
725
+ <!--
726
+ ### Recommendations
727
+
728
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
729
+ -->
730
+
731
+ ## Training Details
732
+
733
+ ### Training Dataset
734
+
735
+ #### Unnamed Dataset
736
+
737
+
738
+ * Size: 2,048 training samples
739
+ * Columns: <code>Question</code> and <code>chunk</code>
740
+ * Approximate statistics based on the first 1000 samples:
741
+ | | Question | chunk |
742
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
743
+ | type | string | string |
744
+ | details | <ul><li>min: 10 tokens</li><li>mean: 15.84 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 84.15 tokens</li><li>max: 467 tokens</li></ul> |
745
+ * Samples:
746
+ | Question | chunk |
747
+ |:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
748
+ | <code>Could you share the link to the 2020 Data Structures final exam?</code> | <code>The final exam for Data Structures course, offered by the general department, from 2020, is available at the following link: [https://drive.google.com/file/d/1U735N5tPHTyXtWgoSp0XI1zo9j2LN2Km/view</code> |
749
+ | <code>Can you provide the exam link for the 2018 Software Engineering course?</code> | <code>The final exam for Software Engineering course, offered by the computer science department, from 2018, is available at the following link: [https://drive.google.com/file/d/1kqjCVWTBJVhr_JyiTmfrK1BrHy8_tVX2/view</code> |
750
+ | <code>- Who decides if an absence excuse is acceptable for a final exam?</code> | <code>Topic: Absence from Written Exam<br>Summary: Unexcused absence from a final exam results in a failing grade (F).<br>Chunk: "Absence from the written exam<br>A student who is absent from the final exam for a course without an acceptable excuse from the College Council is considered a failure in the course and has a grade (F)."</code> |
751
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
752
+ ```json
753
+ {
754
+ "scale": 20.0,
755
+ "similarity_fct": "cos_sim"
756
+ }
757
+ ```
758
+
759
+ ### Evaluation Dataset
760
+
761
+ #### Unnamed Dataset
762
+
763
+
764
+ * Size: 256 evaluation samples
765
+ * Columns: <code>Question</code> and <code>chunk</code>
766
+ * Approximate statistics based on the first 256 samples:
767
+ | | Question | chunk |
768
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
769
+ | type | string | string |
770
+ | details | <ul><li>min: 10 tokens</li><li>mean: 16.01 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 79.97 tokens</li><li>max: 467 tokens</li></ul> |
771
+ * Samples:
772
+ | Question | chunk |
773
+ |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
774
+ | <code>How do I get to the final exam for the AI course in 2016?</code> | <code>The final exam for Artificial Intelligence course, offered by the general department, from 2016, is available at the following link: [https://drive.google.com/file/d/1vaZOQMuqe4qfzPzgvxiSz0rnGxzFwL-F/view?usp=sharing</code> |
775
+ | <code>Can I get the URL for the 2024 Probability and Statistics final exam?</code> | <code>The final exam for the Probability & Statistics course, offered by the general department, from 2024, is available at the following link: [https://drive.google.com/file/d/1lAFwZRcgDl02zKwrFclAvmqr5k9Z_Ct2/view?usp=sharing].</code> |
776
+ | <code>Where can I find the final exam link for the Digital Signal Processing course from 2024?</code> | <code>The final exam for Digital Signal Processing course, offered by the computer science department, from 2024, is available at the following link: [https://drive.google.com/file/d/1RO0aPoom-TA-qgsopwR9krszD_pQIzfJ/view?usp=sharing</code> |
777
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
778
+ ```json
779
+ {
780
+ "scale": 20.0,
781
+ "similarity_fct": "cos_sim"
782
+ }
783
+ ```
784
+
785
+ ### Training Hyperparameters
786
+ #### Non-Default Hyperparameters
787
+
788
+ - `eval_strategy`: steps
789
+ - `per_device_train_batch_size`: 32
790
+ - `per_device_eval_batch_size`: 32
791
+ - `learning_rate`: 1e-05
792
+ - `warmup_ratio`: 0.2
793
+ - `batch_sampler`: no_duplicates
794
+
795
+ #### All Hyperparameters
796
+ <details><summary>Click to expand</summary>
797
+
798
+ - `overwrite_output_dir`: False
799
+ - `do_predict`: False
800
+ - `eval_strategy`: steps
801
+ - `prediction_loss_only`: True
802
+ - `per_device_train_batch_size`: 32
803
+ - `per_device_eval_batch_size`: 32
804
+ - `per_gpu_train_batch_size`: None
805
+ - `per_gpu_eval_batch_size`: None
806
+ - `gradient_accumulation_steps`: 1
807
+ - `eval_accumulation_steps`: None
808
+ - `torch_empty_cache_steps`: None
809
+ - `learning_rate`: 1e-05
810
+ - `weight_decay`: 0.0
811
+ - `adam_beta1`: 0.9
812
+ - `adam_beta2`: 0.999
813
+ - `adam_epsilon`: 1e-08
814
+ - `max_grad_norm`: 1.0
815
+ - `num_train_epochs`: 3
816
+ - `max_steps`: -1
817
+ - `lr_scheduler_type`: linear
818
+ - `lr_scheduler_kwargs`: {}
819
+ - `warmup_ratio`: 0.2
820
+ - `warmup_steps`: 0
821
+ - `log_level`: passive
822
+ - `log_level_replica`: warning
823
+ - `log_on_each_node`: True
824
+ - `logging_nan_inf_filter`: True
825
+ - `save_safetensors`: True
826
+ - `save_on_each_node`: False
827
+ - `save_only_model`: False
828
+ - `restore_callback_states_from_checkpoint`: False
829
+ - `no_cuda`: False
830
+ - `use_cpu`: False
831
+ - `use_mps_device`: False
832
+ - `seed`: 42
833
+ - `data_seed`: None
834
+ - `jit_mode_eval`: False
835
+ - `use_ipex`: False
836
+ - `bf16`: False
837
+ - `fp16`: False
838
+ - `fp16_opt_level`: O1
839
+ - `half_precision_backend`: auto
840
+ - `bf16_full_eval`: False
841
+ - `fp16_full_eval`: False
842
+ - `tf32`: None
843
+ - `local_rank`: 0
844
+ - `ddp_backend`: None
845
+ - `tpu_num_cores`: None
846
+ - `tpu_metrics_debug`: False
847
+ - `debug`: []
848
+ - `dataloader_drop_last`: False
849
+ - `dataloader_num_workers`: 0
850
+ - `dataloader_prefetch_factor`: None
851
+ - `past_index`: -1
852
+ - `disable_tqdm`: False
853
+ - `remove_unused_columns`: True
854
+ - `label_names`: None
855
+ - `load_best_model_at_end`: False
856
+ - `ignore_data_skip`: False
857
+ - `fsdp`: []
858
+ - `fsdp_min_num_params`: 0
859
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
860
+ - `fsdp_transformer_layer_cls_to_wrap`: None
861
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
862
+ - `deepspeed`: None
863
+ - `label_smoothing_factor`: 0.0
864
+ - `optim`: adamw_torch
865
+ - `optim_args`: None
866
+ - `adafactor`: False
867
+ - `group_by_length`: False
868
+ - `length_column_name`: length
869
+ - `ddp_find_unused_parameters`: None
870
+ - `ddp_bucket_cap_mb`: None
871
+ - `ddp_broadcast_buffers`: False
872
+ - `dataloader_pin_memory`: True
873
+ - `dataloader_persistent_workers`: False
874
+ - `skip_memory_metrics`: True
875
+ - `use_legacy_prediction_loop`: False
876
+ - `push_to_hub`: False
877
+ - `resume_from_checkpoint`: None
878
+ - `hub_model_id`: None
879
+ - `hub_strategy`: every_save
880
+ - `hub_private_repo`: None
881
+ - `hub_always_push`: False
882
+ - `gradient_checkpointing`: False
883
+ - `gradient_checkpointing_kwargs`: None
884
+ - `include_inputs_for_metrics`: False
885
+ - `include_for_metrics`: []
886
+ - `eval_do_concat_batches`: True
887
+ - `fp16_backend`: auto
888
+ - `push_to_hub_model_id`: None
889
+ - `push_to_hub_organization`: None
890
+ - `mp_parameters`:
891
+ - `auto_find_batch_size`: False
892
+ - `full_determinism`: False
893
+ - `torchdynamo`: None
894
+ - `ray_scope`: last
895
+ - `ddp_timeout`: 1800
896
+ - `torch_compile`: False
897
+ - `torch_compile_backend`: None
898
+ - `torch_compile_mode`: None
899
+ - `dispatch_batches`: None
900
+ - `split_batches`: None
901
+ - `include_tokens_per_second`: False
902
+ - `include_num_input_tokens_seen`: False
903
+ - `neftune_noise_alpha`: None
904
+ - `optim_target_modules`: None
905
+ - `batch_eval_metrics`: False
906
+ - `eval_on_start`: False
907
+ - `use_liger_kernel`: False
908
+ - `eval_use_gather_object`: False
909
+ - `average_tokens_across_devices`: False
910
+ - `prompts`: None
911
+ - `batch_sampler`: no_duplicates
912
+ - `multi_dataset_batch_sampler`: proportional
913
+
914
+ </details>
915
+
916
+ ### Training Logs
917
+ | Epoch | Step | Training Loss | Validation Loss | ai-college-validation_cosine_ndcg@10 |
918
+ |:------:|:----:|:-------------:|:---------------:|:------------------------------------:|
919
+ | 0 | 0 | - | - | 0.7656 |
920
+ | 1.0 | 64 | - | - | 0.8542 |
921
+ | 1.5469 | 100 | 0.0359 | 0.0239 | 0.8529 |
922
+ | 2.9688 | 192 | - | - | 0.8575 |
923
+ | 1.5469 | 100 | 0.0126 | 0.0306 | 0.8621 |
924
+ | 3.0781 | 200 | 0.0155 | 0.0267 | 0.8575 |
925
+ | 4.625 | 300 | 0.0195 | 0.0287 | 0.8542 |
926
+ | 4.9375 | 320 | - | - | 0.8556 |
927
+ | 1.5469 | 100 | 0.0034 | 0.0289 | 0.8605 |
928
+ | 2.9688 | 192 | - | - | 0.8615 |
929
+ | 1.5469 | 100 | 0.0014 | 0.0312 | 0.8644 |
930
+ | 2.9688 | 192 | - | - | 0.8656 |
931
+
932
+
933
+ ### Framework Versions
934
+ - Python: 3.10.12
935
+ - Sentence Transformers: 3.3.1
936
+ - Transformers: 4.47.0
937
+ - PyTorch: 2.5.1+cu121
938
+ - Accelerate: 1.2.1
939
+ - Datasets: 3.3.1
940
+ - Tokenizers: 0.21.0
941
+
942
+ ## Citation
943
+
944
+ ### BibTeX
945
+
946
+ #### Sentence Transformers
947
+ ```bibtex
948
+ @inproceedings{reimers-2019-sentence-bert,
949
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
950
+ author = "Reimers, Nils and Gurevych, Iryna",
951
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
952
+ month = "11",
953
+ year = "2019",
954
+ publisher = "Association for Computational Linguistics",
955
+ url = "https://arxiv.org/abs/1908.10084",
956
+ }
957
+ ```
958
+
959
+ #### MultipleNegativesRankingLoss
960
+ ```bibtex
961
+ @misc{henderson2017efficient,
962
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
963
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
964
+ year={2017},
965
+ eprint={1705.00652},
966
+ archivePrefix={arXiv},
967
+ primaryClass={cs.CL}
968
+ }
969
+ ```
970
+
971
+ <!--
972
+ ## Glossary
973
+
974
+ *Clearly define terms in order to be accessible across audiences.*
975
+ -->
976
+
977
+ <!--
978
+ ## Model Card Authors
979
+
980
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
981
+ -->
982
+
983
+ <!--
984
+ ## Model Card Contact
985
+
986
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
987
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-distilroberta-v1",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e902315f4d340f0e1ad8531fe89903dffde8b6d452188429a942eb26058ffeda
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff