metadata
language:
- zh
base_model: OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0
pipeline_tag: feature-extraction
tags:
- mteb
- sentence-transformers
- llama-cpp
- gguf-my-repo
model-index:
- name: Ops-MoA-Yuan-embedding-1.0
results:
- task:
type: Retrieval
dataset:
name: MTEB CmedqaRetrieval
type: C-MTEB/CmedqaRetrieval
config: default
split: dev
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
metrics:
- type: ndcg_at_10
value: 51.461
- task:
type: Retrieval
dataset:
name: MTEB CovidRetrieval
type: C-MTEB/CovidRetrieval
config: default
split: dev
revision: 1271c7809071a13532e05f25fb53511ffce77117
metrics:
- type: ndcg_at_10
value: 93.2
- task:
type: Retrieval
dataset:
name: MTEB DuRetrieval
type: C-MTEB/DuRetrieval
config: default
split: dev
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
metrics:
- type: ndcg_at_10
value: 89.84
- task:
type: Retrieval
dataset:
name: MTEB EcomRetrieval
type: C-MTEB/EcomRetrieval
config: default
split: dev
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
metrics:
- type: ndcg_at_10
value: 71.084
- task:
type: Retrieval
dataset:
name: MTEB MMarcoRetrieval
type: C-MTEB/MMarcoRetrieval
config: default
split: dev
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
metrics:
- type: ndcg_at_10
value: 82.43
- task:
type: Retrieval
dataset:
name: MTEB MedicalRetrieval
type: C-MTEB/MedicalRetrieval
config: default
split: dev
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
metrics:
- type: ndcg_at_10
value: 74.848
- task:
type: Retrieval
dataset:
name: MTEB T2Retrieval
type: C-MTEB/T2Retrieval
config: default
split: dev
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
metrics:
- type: ndcg_at_10
value: 85.784
- task:
type: Retrieval
dataset:
name: MTEB VideoRetrieval
type: C-MTEB/VideoRetrieval
config: default
split: dev
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
metrics:
- type: ndcg_at_10
value: 79.513
6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF
This model was converted to GGUF format from OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048