File size: 4,072 Bytes
9b858b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- zh
base_model: OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0
pipeline_tag: feature-extraction
tags:
- mteb
- sentence-transformers
- llama-cpp
- gguf-my-repo
model-index:
- name: Ops-MoA-Yuan-embedding-1.0
  results:
  - task:
      type: Retrieval
    dataset:
      name: MTEB CmedqaRetrieval
      type: C-MTEB/CmedqaRetrieval
      config: default
      split: dev
      revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
    metrics:
    - type: ndcg_at_10
      value: 51.461
  - task:
      type: Retrieval
    dataset:
      name: MTEB CovidRetrieval
      type: C-MTEB/CovidRetrieval
      config: default
      split: dev
      revision: 1271c7809071a13532e05f25fb53511ffce77117
    metrics:
    - type: ndcg_at_10
      value: 93.2
  - task:
      type: Retrieval
    dataset:
      name: MTEB DuRetrieval
      type: C-MTEB/DuRetrieval
      config: default
      split: dev
      revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
    metrics:
    - type: ndcg_at_10
      value: 89.84
  - task:
      type: Retrieval
    dataset:
      name: MTEB EcomRetrieval
      type: C-MTEB/EcomRetrieval
      config: default
      split: dev
      revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
    metrics:
    - type: ndcg_at_10
      value: 71.084
  - task:
      type: Retrieval
    dataset:
      name: MTEB MMarcoRetrieval
      type: C-MTEB/MMarcoRetrieval
      config: default
      split: dev
      revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
    metrics:
    - type: ndcg_at_10
      value: 82.43
  - task:
      type: Retrieval
    dataset:
      name: MTEB MedicalRetrieval
      type: C-MTEB/MedicalRetrieval
      config: default
      split: dev
      revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
    metrics:
    - type: ndcg_at_10
      value: 74.848
  - task:
      type: Retrieval
    dataset:
      name: MTEB T2Retrieval
      type: C-MTEB/T2Retrieval
      config: default
      split: dev
      revision: 8731a845f1bf500a4f111cf1070785c793d10e64
    metrics:
    - type: ndcg_at_10
      value: 85.784
  - task:
      type: Retrieval
    dataset:
      name: MTEB VideoRetrieval
      type: C-MTEB/VideoRetrieval
      config: default
      split: dev
      revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
    metrics:
    - type: ndcg_at_10
      value: 79.513
---

# 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF
This model was converted to GGUF format from [`OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0`](https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048
```