--- language: - zh base_model: OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0 pipeline_tag: feature-extraction tags: - mteb - sentence-transformers - llama-cpp - gguf-my-repo model-index: - name: Ops-MoA-Yuan-embedding-1.0 results: - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: ndcg_at_10 value: 51.461 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: ndcg_at_10 value: 93.2 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: ndcg_at_10 value: 89.84 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: ndcg_at_10 value: 71.084 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: ndcg_at_10 value: 82.43 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: ndcg_at_10 value: 74.848 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: ndcg_at_10 value: 85.784 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: ndcg_at_10 value: 79.513 --- # 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF This model was converted to GGUF format from [`OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0`](https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo 6san/Ops-MoA-Yuan-embedding-1.0-Q8_0-GGUF --hf-file ops-moa-yuan-embedding-1.0-q8_0.gguf -c 2048 ```