|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from torch.nn import functional as F |
|
|
|
from fla.layers.rwkv6 import LoRA |
|
from fla.modules import GroupNorm |
|
from fla.modules.l2norm import l2_norm |
|
from fla.ops.rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7 |
|
|
|
if TYPE_CHECKING: |
|
from fla.models.utils import Cache |
|
|
|
|
|
class RWKV7Attention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
mode: str = 'chunk', |
|
hidden_size: int = 1024, |
|
head_dim: Optional[int] = 64, |
|
num_heads: Optional[int] = None, |
|
decay_low_rank_dim: int = 64, |
|
gate_low_rank_dim: int = 128, |
|
a_low_rank_dim: int = 64, |
|
v_low_rank_dim: int = 16, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
layer_idx: int = None, |
|
fuse_norm: bool = False, |
|
value_dim: int = None, |
|
**kwargs |
|
) -> RWKV7Attention: |
|
super().__init__() |
|
|
|
self.mode = mode |
|
assert mode in ['chunk', 'fused_recurrent'], f"Not supported mode `{mode}`." |
|
self.hidden_size = hidden_size |
|
|
|
self.key_dim = hidden_size |
|
self.value_dim = value_dim if value_dim is not None else hidden_size |
|
if head_dim is None and num_heads is None: |
|
raise ValueError("Either `head_dim` or `num_heads` must be specified.") |
|
elif head_dim is not None: |
|
self.head_dim = head_dim |
|
self.num_heads = int(hidden_size // head_dim) |
|
elif num_heads is not None: |
|
self.head_dim = int(hidden_size // num_heads) |
|
self.num_heads = num_heads |
|
self.head_v_dim = int(self.value_dim // self.num_heads) |
|
|
|
self.decay_low_rank_dim = decay_low_rank_dim |
|
self.gate_low_rank_dim = gate_low_rank_dim |
|
self.a_low_rank_dim = a_low_rank_dim |
|
self.v_low_rank_dim = v_low_rank_dim |
|
self.layer_idx = layer_idx |
|
self.fuse_norm = fuse_norm |
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
|
|
self.x_x = nn.Parameter(torch.zeros(6, hidden_size)) |
|
|
|
self.k_k = nn.Parameter(torch.zeros(self.key_dim)) |
|
self.k_a = nn.Parameter(torch.zeros(self.key_dim)) |
|
self.r_k = nn.Parameter(torch.zeros(self.num_heads, self.head_dim)) |
|
|
|
self.r_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
|
|
self.w_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=decay_low_rank_dim, activation='tanh') |
|
if self.layer_idx != 0: |
|
self.v_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=v_low_rank_dim, activation=None) |
|
self.a_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=a_low_rank_dim, activation=None) |
|
self.g_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=gate_low_rank_dim, activation='sigmoid', bias=False) |
|
|
|
if self.fuse_norm: |
|
self.g_norm = GroupNorm( |
|
num_groups=self.num_heads, |
|
hidden_size=self.value_dim, |
|
elementwise_affine=elementwise_affine, |
|
eps=self.head_dim*norm_eps, |
|
bias=True, |
|
) |
|
else: |
|
self.g_norm = nn.GroupNorm( |
|
num_groups=self.num_heads, |
|
num_channels=self.value_dim, |
|
eps=self.head_dim*norm_eps, |
|
affine=elementwise_affine |
|
) |
|
|
|
self.apply(self._initialize_weights) |
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
if getattr(module, "_is_hf_initialized", False): |
|
return |
|
if isinstance(module, nn.Linear): |
|
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
if isinstance(module, nn.Parameter): |
|
nn.init.xavier_uniform_(module, gain=2 ** -2.5) |
|
module._is_hf_initialized = True |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
v_first: torch.Tensor = None, |
|
**kwargs |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
|
|
if self.training: |
|
|
|
mode = 'chunk' |
|
else: |
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode |
|
|
|
last_state = None |
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
last_state = past_key_values[self.layer_idx] |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states.mul(attention_mask[:, -hidden_states.shape[-2]:, None]) |
|
if hidden_states.shape[1] == 1 and last_state is not None: |
|
shifted = last_state['conv_state'].unsqueeze(1) |
|
else: |
|
shifted = self.time_shift(hidden_states) |
|
if last_state is not None: |
|
shifted[:, 0] = last_state['conv_state'] |
|
|
|
|
|
delta = shifted - hidden_states |
|
xr, xw, xk, xv, xa, xg = hidden_states.addcmul(delta, self.x_x.view(6, 1, 1, -1)).unbind(0) |
|
|
|
r = self.r_proj(xr) |
|
|
|
|
|
|
|
|
|
w = -0.6065306597126334 * self.w_lora(xw).to(torch.float).sigmoid() |
|
|
|
k = self.k_proj(xk) |
|
v = self.v_proj(xv) |
|
|
|
if self.layer_idx == 0: |
|
v_first = v |
|
else: |
|
v = torch.lerp(v, v_first, self.v_lora(xv).sigmoid()) |
|
a = self.a_lora(xa).sigmoid() |
|
g = self.g_lora(xg) |
|
|
|
if self.fuse_norm: |
|
kk = l2_norm(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim)) |
|
else: |
|
kk = F.normalize(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim), dim=-1, p=2.0) |
|
|
|
k = k.addcmul(k * (a - 1), self.k_a) |
|
|
|
|
|
if attention_mask is not None: |
|
v = v * attention_mask[:, -v.shape[-2]:, None] |
|
r, w, k, a = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_dim), (r, w, k, a)) |
|
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim) |
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
|
|
rwkv7_fn = chunk_rwkv7 if mode == 'chunk' else fused_recurrent_rwkv7 |
|
cu_seqlens = kwargs.get('cu_seqlens', None) |
|
o, recurrent_state = rwkv7_fn( |
|
r=r, |
|
w=w, |
|
k=k, |
|
v=v, |
|
a=-kk, |
|
b=kk * a, |
|
scale=1., |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens, |
|
head_first=False |
|
) |
|
|
|
if past_key_values is not None: |
|
past_key_values.update( |
|
recurrent_state=recurrent_state, |
|
conv_state=hidden_states[:, -1], |
|
layer_idx=self.layer_idx, |
|
offset=r.shape[1] |
|
) |
|
|
|
if self.fuse_norm: |
|
o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) |
|
else: |
|
o = self.g_norm(rearrange(o, 'b t h d -> (b t) (h d)')).view(batch_size, seq_len, -1) |
|
|
|
o = o + ((r * k * self.r_k).sum(-1, keepdim=True) * v).view(batch_size, seq_len, -1) |
|
o = self.o_proj(o * g) |
|
|
|
return o, None, past_key_values, v_first |
|
|