zaydzuhri's picture
Add files using upload-large-folder tool
0298ad2 verified
raw
history blame
8.53 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from __future__ import annotations
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F
from fla.layers.rwkv6 import LoRA
from fla.modules import GroupNorm
from fla.modules.l2norm import l2_norm
from fla.ops.rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7
if TYPE_CHECKING:
from fla.models.utils import Cache
class RWKV7Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
head_dim: Optional[int] = 64,
num_heads: Optional[int] = None,
decay_low_rank_dim: int = 64,
gate_low_rank_dim: int = 128,
a_low_rank_dim: int = 64,
v_low_rank_dim: int = 16,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None,
fuse_norm: bool = False,
value_dim: int = None,
**kwargs
) -> RWKV7Attention:
super().__init__()
self.mode = mode
assert mode in ['chunk', 'fused_recurrent'], f"Not supported mode `{mode}`."
self.hidden_size = hidden_size
self.key_dim = hidden_size
self.value_dim = value_dim if value_dim is not None else hidden_size
if head_dim is None and num_heads is None:
raise ValueError("Either `head_dim` or `num_heads` must be specified.")
elif head_dim is not None:
self.head_dim = head_dim
self.num_heads = int(hidden_size // head_dim)
elif num_heads is not None:
self.head_dim = int(hidden_size // num_heads)
self.num_heads = num_heads
self.head_v_dim = int(self.value_dim // self.num_heads)
self.decay_low_rank_dim = decay_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.a_low_rank_dim = a_low_rank_dim
self.v_low_rank_dim = v_low_rank_dim
self.layer_idx = layer_idx
self.fuse_norm = fuse_norm
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_x = nn.Parameter(torch.zeros(6, hidden_size))
self.k_k = nn.Parameter(torch.zeros(self.key_dim))
self.k_a = nn.Parameter(torch.zeros(self.key_dim))
self.r_k = nn.Parameter(torch.zeros(self.num_heads, self.head_dim))
self.r_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.w_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=decay_low_rank_dim, activation='tanh')
if self.layer_idx != 0:
self.v_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=v_low_rank_dim, activation=None)
self.a_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=a_low_rank_dim, activation=None)
self.g_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=gate_low_rank_dim, activation='sigmoid', bias=False)
if self.fuse_norm:
self.g_norm = GroupNorm(
num_groups=self.num_heads,
hidden_size=self.value_dim,
elementwise_affine=elementwise_affine,
eps=self.head_dim*norm_eps,
bias=True,
)
else:
self.g_norm = nn.GroupNorm(
num_groups=self.num_heads,
num_channels=self.value_dim,
eps=self.head_dim*norm_eps,
affine=elementwise_affine
)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
if isinstance(module, nn.Parameter):
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
v_first: torch.Tensor = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
batch_size, seq_len, _ = hidden_states.shape
if self.training:
# if training, use chunk mode no matter how short the sequence is
mode = 'chunk'
else:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
if attention_mask is not None:
hidden_states = hidden_states.mul(attention_mask[:, -hidden_states.shape[-2]:, None])
if hidden_states.shape[1] == 1 and last_state is not None:
shifted = last_state['conv_state'].unsqueeze(1)
else:
shifted = self.time_shift(hidden_states)
if last_state is not None:
shifted[:, 0] = last_state['conv_state']
# [batch_size, seq_len, hidden_size]
delta = shifted - hidden_states
xr, xw, xk, xv, xa, xg = hidden_states.addcmul(delta, self.x_x.view(6, 1, 1, -1)).unbind(0)
r = self.r_proj(xr)
# -math.exp(-0.5) = -0.6065306597126334
# I think .to(torch.float) is unnecessary here, since we calculate lora in bloat16
# when we apply sigmoid, bf16 input will not have numerical issue
# FIXME: check if we can remove .to(torch.float)
w = -0.6065306597126334 * self.w_lora(xw).to(torch.float).sigmoid()
k = self.k_proj(xk)
v = self.v_proj(xv)
if self.layer_idx == 0:
v_first = v
else:
v = torch.lerp(v, v_first, self.v_lora(xv).sigmoid())
a = self.a_lora(xa).sigmoid()
g = self.g_lora(xg)
if self.fuse_norm:
kk = l2_norm(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim))
else:
kk = F.normalize(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim), dim=-1, p=2.0)
k = k.addcmul(k * (a - 1), self.k_a)
# dealing with left-padding
if attention_mask is not None:
v = v * attention_mask[:, -v.shape[-2]:, None]
r, w, k, a = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_dim), (r, w, k, a))
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
rwkv7_fn = chunk_rwkv7 if mode == 'chunk' else fused_recurrent_rwkv7
cu_seqlens = kwargs.get('cu_seqlens', None)
o, recurrent_state = rwkv7_fn(
r=r,
w=w,
k=k,
v=v,
a=-kk,
b=kk * a,
scale=1.,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False
)
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=hidden_states[:, -1],
layer_idx=self.layer_idx,
offset=r.shape[1]
)
if self.fuse_norm:
o = self.g_norm(rearrange(o, '... h d -> ... (h d)'))
else:
o = self.g_norm(rearrange(o, 'b t h d -> (b t) (h d)')).view(batch_size, seq_len, -1)
o = o + ((r * k * self.r_k).sum(-1, keepdim=True) * v).view(batch_size, seq_len, -1)
o = self.o_proj(o * g)
return o, None, past_key_values, v_first