File size: 8,532 Bytes
0298ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from __future__ import annotations

from typing import TYPE_CHECKING, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F

from fla.layers.rwkv6 import LoRA
from fla.modules import GroupNorm
from fla.modules.l2norm import l2_norm
from fla.ops.rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7

if TYPE_CHECKING:
    from fla.models.utils import Cache


class RWKV7Attention(nn.Module):

    def __init__(
        self,
        mode: str = 'chunk',
        hidden_size: int = 1024,
        head_dim: Optional[int] = 64,
        num_heads: Optional[int] = None,
        decay_low_rank_dim: int = 64,
        gate_low_rank_dim: int = 128,
        a_low_rank_dim: int = 64,
        v_low_rank_dim: int = 16,
        elementwise_affine: Optional[bool] = True,
        norm_eps: float = 1e-5,
        layer_idx: int = None,
        fuse_norm: bool = False,
        value_dim: int = None,
        **kwargs
    ) -> RWKV7Attention:
        super().__init__()

        self.mode = mode
        assert mode in ['chunk', 'fused_recurrent'], f"Not supported mode `{mode}`."
        self.hidden_size = hidden_size

        self.key_dim = hidden_size
        self.value_dim = value_dim if value_dim is not None else hidden_size
        if head_dim is None and num_heads is None:
            raise ValueError("Either `head_dim` or `num_heads` must be specified.")
        elif head_dim is not None:
            self.head_dim = head_dim
            self.num_heads = int(hidden_size // head_dim)
        elif num_heads is not None:
            self.head_dim = int(hidden_size // num_heads)
            self.num_heads = num_heads
        self.head_v_dim = int(self.value_dim // self.num_heads)

        self.decay_low_rank_dim = decay_low_rank_dim
        self.gate_low_rank_dim = gate_low_rank_dim
        self.a_low_rank_dim = a_low_rank_dim
        self.v_low_rank_dim = v_low_rank_dim
        self.layer_idx = layer_idx
        self.fuse_norm = fuse_norm

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        self.x_x = nn.Parameter(torch.zeros(6, hidden_size))

        self.k_k = nn.Parameter(torch.zeros(self.key_dim))
        self.k_a = nn.Parameter(torch.zeros(self.key_dim))
        self.r_k = nn.Parameter(torch.zeros(self.num_heads, self.head_dim))

        self.r_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
        self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)

        self.w_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=decay_low_rank_dim, activation='tanh')
        if self.layer_idx != 0:
            self.v_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=v_low_rank_dim, activation=None)
        self.a_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=a_low_rank_dim, activation=None)
        self.g_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=gate_low_rank_dim, activation='sigmoid', bias=False)

        if self.fuse_norm:
            self.g_norm = GroupNorm(
                num_groups=self.num_heads,
                hidden_size=self.value_dim,
                elementwise_affine=elementwise_affine,
                eps=self.head_dim*norm_eps,
                bias=True,
            )
        else:
            self.g_norm = nn.GroupNorm(
                num_groups=self.num_heads,
                num_channels=self.value_dim,
                eps=self.head_dim*norm_eps,
                affine=elementwise_affine
            )

        self.apply(self._initialize_weights)

    def _initialize_weights(self, module: nn.Module):
        if getattr(module, "_is_hf_initialized", False):
            return
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        if isinstance(module, nn.Parameter):
            nn.init.xavier_uniform_(module, gain=2 ** -2.5)
        module._is_hf_initialized = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        v_first: torch.Tensor = None,
        **kwargs
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        batch_size, seq_len, _ = hidden_states.shape

        if self.training:
            # if training, use chunk mode no matter how short the sequence is
            mode = 'chunk'
        else:
            # launching the triton kernel for just one token will actually be slower
            mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]

        if attention_mask is not None:
            hidden_states = hidden_states.mul(attention_mask[:, -hidden_states.shape[-2]:, None])
        if hidden_states.shape[1] == 1 and last_state is not None:
            shifted = last_state['conv_state'].unsqueeze(1)
        else:
            shifted = self.time_shift(hidden_states)
            if last_state is not None:
                shifted[:, 0] = last_state['conv_state']

        # [batch_size, seq_len, hidden_size]
        delta = shifted - hidden_states
        xr, xw, xk, xv, xa, xg = hidden_states.addcmul(delta, self.x_x.view(6, 1, 1, -1)).unbind(0)

        r = self.r_proj(xr)
        # -math.exp(-0.5) = -0.6065306597126334
        # I think .to(torch.float) is unnecessary here, since we calculate lora in bloat16
        # when we apply sigmoid, bf16 input will not have numerical issue
        # FIXME: check if we can remove .to(torch.float)
        w = -0.6065306597126334 * self.w_lora(xw).to(torch.float).sigmoid()

        k = self.k_proj(xk)
        v = self.v_proj(xv)

        if self.layer_idx == 0:
            v_first = v
        else:
            v = torch.lerp(v, v_first, self.v_lora(xv).sigmoid())
        a = self.a_lora(xa).sigmoid()
        g = self.g_lora(xg)

        if self.fuse_norm:
            kk = l2_norm(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim))
        else:
            kk = F.normalize(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim), dim=-1, p=2.0)

        k = k.addcmul(k * (a - 1), self.k_a)

        # dealing with left-padding
        if attention_mask is not None:
            v = v * attention_mask[:, -v.shape[-2]:, None]
        r, w, k, a = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_dim), (r, w, k, a))
        v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None

        rwkv7_fn = chunk_rwkv7 if mode == 'chunk' else fused_recurrent_rwkv7
        cu_seqlens = kwargs.get('cu_seqlens', None)
        o, recurrent_state = rwkv7_fn(
            r=r,
            w=w,
            k=k,
            v=v,
            a=-kk,
            b=kk * a,
            scale=1.,
            initial_state=recurrent_state,
            output_final_state=use_cache,
            cu_seqlens=cu_seqlens,
            head_first=False
        )

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=hidden_states[:, -1],
                layer_idx=self.layer_idx,
                offset=r.shape[1]
            )

        if self.fuse_norm:
            o = self.g_norm(rearrange(o, '... h d -> ... (h d)'))
        else:
            o = self.g_norm(rearrange(o, 'b t h d -> (b t) (h d)')).view(batch_size, seq_len, -1)

        o = o + ((r * k * self.r_k).sum(-1, keepdim=True) * v).view(batch_size, seq_len, -1)
        o = self.o_proj(o * g)

        return o, None, past_key_values, v_first