Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- README.md +471 -0
- config.json +33 -0
- configs/delta_net_1B.json +29 -0
- configs/delta_net_340M.json +27 -0
- configs/gla_340M.json +24 -0
- configs/gla_7B.json +25 -0
- configs/gsa_340M.json +29 -0
- configs/hgrn2_340M.json +20 -0
- configs/rectified_transformer_120M.json +19 -0
- configs/rectified_transformer_340M.json +19 -0
- configs/softpick_transformer_120M.json +19 -0
- configs/softpick_transformer_340M.json +19 -0
- configs/transformer_120M.json +18 -0
- configs/transformer_1B.json +22 -0
- configs/transformer_340M.json +18 -0
- configs/transformer_7B.json +21 -0
- configs/vanilla_transformer_120M.json +19 -0
- configs/vanilla_transformer_340M.json +19 -0
- download_checkpoint.py +35 -0
- fla/__init__.py +110 -0
- fla/layers/gla.py +294 -0
- fla/layers/rwkv7.py +221 -0
- fla/utils.py +221 -0
- flame/__init__.py +1 -0
- flame/components/__init__.py +0 -0
- flame/components/checkpoint.py +59 -0
- flame/config_manager.py +940 -0
- flame/data.py +570 -0
- flame/models/__init__.py +0 -0
- flame/models/activation_offloading.py +447 -0
- flame/models/fla.toml +67 -0
- flame/models/parallelize_fla.py +550 -0
- flame/models/pipeline_fla.py +162 -0
- flame/tools/__init__.py +0 -0
- flame/tools/utils.py +41 -0
- flame/train.py +851 -0
- flame/utils/__init__.py +0 -0
- flame/utils/checkpoint.py +50 -0
- flame/utils/convert_dcp_to_hf.py +66 -0
- flame/utils/convert_hf_to_dcp.py +34 -0
- flame/utils/hf_utils.py +77 -0
- generation_config.json +6 -0
- logs/none_nygareex/attempt_0/0/stderr.log +0 -0
- logs/none_nygareex/attempt_0/0/stdout.log +0 -0
- logs/none_nygareex/attempt_0/1/stderr.log +0 -0
- logs/none_nygareex/attempt_0/1/stdout.log +0 -0
- logs/none_nygareex/attempt_0/2/stderr.log +0 -0
- logs/none_nygareex/attempt_0/2/stdout.log +0 -0
- logs/none_nygareex/attempt_0/3/stderr.log +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023-2025 Songlin Yang, Yu Zhang
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
# 🔥 Flame: Flash Linear Attention Made Easy
|
4 |
+
|
5 |
+
</div>
|
6 |
+
|
7 |
+
Welcome to 🔥 `flame`, a minimal and efficient framework built on `torchtitan` for training Flash Linear Attention (FLA) models (and more broadly, arbitrary autoregressive language models) with blazing efficiency.
|
8 |
+
|
9 |
+
**Feature Highlights:**
|
10 |
+
|
11 |
+
- 🚀 Minimal, easy-to-use, extensible training framework
|
12 |
+
- 🤗 Seamless integration with `fla` and `transformers`
|
13 |
+
- 🔄 Zero-cost data preprocessing: online tokenization, dataset shuffling, and multiple datasets support
|
14 |
+
- 🔮 4D parallelism (coming soon)
|
15 |
+
|
16 |
+
## Setup
|
17 |
+
|
18 |
+
To get started, clone the `flame` repository and install the required dependencies:
|
19 |
+
|
20 |
+
```bash
|
21 |
+
git clone https://github.com/fla-org/flame.git
|
22 |
+
cd flame
|
23 |
+
pip install .
|
24 |
+
```
|
25 |
+
|
26 |
+
`flame` manages minimal dependencies, only including `fla` and `torchtitan` as submodules.
|
27 |
+
After installation, initialize and update the submodules:
|
28 |
+
```sh
|
29 |
+
git submodule update --init --recursive
|
30 |
+
```
|
31 |
+
|
32 |
+
## Dataset Preparation
|
33 |
+
To download the dataset to your local disk, create a new Python file with the following content and execute it:
|
34 |
+
|
35 |
+
```py
|
36 |
+
from datasets import load_dataset
|
37 |
+
|
38 |
+
# load fineweb-edu with parallel processing
|
39 |
+
dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="default", num_proc=64, cache_dir="/your/cache/path")
|
40 |
+
|
41 |
+
# or load a subset with roughly 100B tokens, suitable for small- or medium-sized experiments
|
42 |
+
dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-100BT", num_proc=64, cache_dir="/your/cache/path")
|
43 |
+
```
|
44 |
+
|
45 |
+
## Training Recipes
|
46 |
+
|
47 |
+
Here's an example of training a 340M FLA Transformer model with a LLaMA-like architecture from scratch on a 100BT subset of the Fineweb-edu corpus in streaming mode.
|
48 |
+
|
49 |
+
> [!WARNING]
|
50 |
+
> If the dataset is not downloaded beforehand, the streaming mode will attempt to fetch it from a remote server and download it on-the-fly, which can be highly unstable during training due to network issues.
|
51 |
+
> For stable training, ensure the dataset is downloaded locally (see [**Dataset Preparation**](#dataset-preparation)). Otherwise, we assume you are only testing the new corpus.
|
52 |
+
|
53 |
+
```sh
|
54 |
+
bash train.sh \
|
55 |
+
--job.config_file flame/models/fla.toml \
|
56 |
+
--job.dump_folder exp/transformer-340M-4K-10B/batch1.seqlen65536.context4096.warmup1024.update1.steps20480.lr3e-4.cosine \
|
57 |
+
--model.config configs/transformer_340M.json \
|
58 |
+
--model.tokenizer_path fla-hub/transformer-1.3B-100B \
|
59 |
+
--optimizer.name AdamW \
|
60 |
+
--optimizer.eps 1e-15 \
|
61 |
+
--optimizer.lr 3e-4 \
|
62 |
+
--lr_scheduler.warmup_steps 1024 \
|
63 |
+
--lr_scheduler.lr_min 0.1 \
|
64 |
+
--lr_scheduler.decay_type cosine \
|
65 |
+
--training.batch_size 1 \
|
66 |
+
--training.seq_len 65536 \
|
67 |
+
--training.context_len 4096 \
|
68 |
+
--training.varlen \
|
69 |
+
--training.gradient_accumulation_steps 1 \
|
70 |
+
--training.steps 20480 \
|
71 |
+
--training.max_norm 1.0 \
|
72 |
+
--training.skip_nan_inf \
|
73 |
+
--training.dataset HuggingFaceFW/fineweb-edu \
|
74 |
+
--training.dataset_name sample-100BT \
|
75 |
+
--training.dataset_split train \
|
76 |
+
--training.streaming \
|
77 |
+
--training.num_workers 32 \
|
78 |
+
--training.prefetch_factor 2 \
|
79 |
+
--training.seed 42 \
|
80 |
+
--training.compile \
|
81 |
+
--checkpoint.interval 2048 \
|
82 |
+
--checkpoint.load_step -1 \
|
83 |
+
--checkpoint.keep_latest_k 2 \
|
84 |
+
--metrics.log_freq 1
|
85 |
+
```
|
86 |
+
|
87 |
+
You can specify the number of GPUs by setting the environment variable `NGPU`, which defaults to 8.
|
88 |
+
**For single-GPU debugging, set `NGPU=1`.**
|
89 |
+
|
90 |
+
We provide several [config files](https://github.com/fla-org/flame/tree/main/configs) for different models.
|
91 |
+
By default, the learning rate is set to 3e-4 with a cosine scheduler. Other schedulers, such as WSD (wsd), are also supported.
|
92 |
+
|
93 |
+
**Key parameters:**
|
94 |
+
- `--lr_scheduler.decay_ratio`: The proportion of the steps allocated to the decay phase. The learning rate will remain stable after the warmup period and only start decaying during the last `decay_ratio` portion of the total training steps, which is known as the Warmup-Stable-Decay (WSD) schedule.
|
95 |
+
- `--lr_scheduler.warmup_steps`: The number of steps for the learning rate warmup phase.
|
96 |
+
- `--training.steps`: Total number of training steps.
|
97 |
+
- `--training.batch_size`: Batch size per device, must be 1 if `--training.varlen` is set.
|
98 |
+
- `--training.seq_len`: The length of each sequence in the batch, which is concatenated from multiple samples.
|
99 |
+
- `--training.context_len`: The max allowed length of a sample. For non-varlen mode, this is equivalent to `seq_len`.
|
100 |
+
- `--training.varlen`: Whether to conduct variable-length sequence training.
|
101 |
+
- `--training.gradient_accumulation_steps`: Number of gradient accumulation steps.
|
102 |
+
|
103 |
+
> [!WARNING]
|
104 |
+
> The total number of tokens processed per batch, referred to as `global_batch_size`, is calculated as batch_size × gradient_accumulation_steps × num_gpus.
|
105 |
+
> Each step processes `global_batch_size * seq_len` tokens.
|
106 |
+
> Monitor the value of `global_batch_size`, `warmup_steps`, and `steps` carefully when modifying any of the hyperparameters!
|
107 |
+
|
108 |
+
For a detailed explanation of all parameters, run:
|
109 |
+
|
110 |
+
```sh
|
111 |
+
bash train.sh -h
|
112 |
+
```
|
113 |
+
|
114 |
+
<details>
|
115 |
+
<summary>Usage</summary>
|
116 |
+
|
117 |
+
```py
|
118 |
+
options:
|
119 |
+
-h, --help show this help message and exit
|
120 |
+
--job.config_file JOB.CONFIG_FILE
|
121 |
+
Job config file
|
122 |
+
--job.dump_folder JOB.DUMP_FOLDER
|
123 |
+
Folder to dump job outputs
|
124 |
+
--job.description JOB.DESCRIPTION
|
125 |
+
Description of the job
|
126 |
+
--job.use_for_integration_test
|
127 |
+
Add this config to the integration test suite
|
128 |
+
--job.print_args Print the args to terminal
|
129 |
+
--model.config MODEL.CONFIG
|
130 |
+
Path to the model config
|
131 |
+
--model.norm_type MODEL.NORM_TYPE
|
132 |
+
Type of layer normalization to use [layernorm,
|
133 |
+
np_layernorm, rmsnorm, fused_rmsnorm]
|
134 |
+
--model.tokenizer_path MODEL.TOKENIZER_PATH
|
135 |
+
Tokenizer path
|
136 |
+
--profiling.enable_profiling
|
137 |
+
Whether to enable pytorch profiler
|
138 |
+
--profiling.save_traces_folder PROFILING.SAVE_TRACES_FOLDER
|
139 |
+
Trace files location
|
140 |
+
--profiling.profile_freq PROFILING.PROFILE_FREQ
|
141 |
+
How often to collect profiler traces, in iterations
|
142 |
+
--profiling.enable_memory_snapshot
|
143 |
+
Whether to dump memory snapshot
|
144 |
+
--profiling.save_memory_snapshot_folder PROFILING.SAVE_MEMORY_SNAPSHOT_FOLDER
|
145 |
+
Memeory snapshot files location
|
146 |
+
--optimizer.name OPTIMIZER.NAME
|
147 |
+
Optimizer to use
|
148 |
+
--optimizer.eps OPTIMIZER.EPS
|
149 |
+
Epsilon value for the optimizer.
|
150 |
+
--optimizer.fused Whether the fused implementation(CUDA only) is used.
|
151 |
+
--optimizer.scheduler {wsd,cosine,linear}
|
152 |
+
Scheduler to use. Currently supported: wsd, cosine,
|
153 |
+
and linear.
|
154 |
+
--optimizer.lr OPTIMIZER.LR
|
155 |
+
Learning rate to use
|
156 |
+
--optimizer.min_lr_ratio OPTIMIZER.MIN_LR_RATIO
|
157 |
+
Min lr ratio for lr scheduler
|
158 |
+
--optimizer.early_step_in_backward
|
159 |
+
Whether to apply optimizer in the backward. Caution,
|
160 |
+
optimizer_in_backward is not compatible with gradients
|
161 |
+
clipping, users should not call
|
162 |
+
register_post_accumulate_grad_hook after the optimizer
|
163 |
+
is built.
|
164 |
+
--training.batch_size TRAINING.BATCH_SIZE
|
165 |
+
Batch size
|
166 |
+
--training.seq_len TRAINING.SEQ_LEN
|
167 |
+
Sequence length
|
168 |
+
--training.context_len TRAINING.CONTEXT_LEN
|
169 |
+
Max length allowed for each sequence
|
170 |
+
--training.varlen Whether to take sequences of variable length as input
|
171 |
+
--training.warmup_steps TRAINING.WARMUP_STEPS
|
172 |
+
Steps for lr scheduler warmup, normally 1/5 of
|
173 |
+
--training.steps
|
174 |
+
--training.gradient_accumulation_steps TRAINING.GRADIENT_ACCUMULATION_STEPS
|
175 |
+
Number of steps to accumulate gradients before
|
176 |
+
updating parameters
|
177 |
+
--training.steps TRAINING.STEPS
|
178 |
+
How many train steps to run
|
179 |
+
--training.max_norm TRAINING.MAX_NORM
|
180 |
+
Max norm for gradient clipping
|
181 |
+
--training.skip_nan_inf
|
182 |
+
Skip batch updates when NaN or INF gradients are
|
183 |
+
encountered during training
|
184 |
+
--training.dataset TRAINING.DATASET
|
185 |
+
Dataset to use, with comma separated values
|
186 |
+
--training.dataset_name TRAINING.DATASET_NAME
|
187 |
+
The name of the dataset config, with comma separated
|
188 |
+
values if provided
|
189 |
+
--training.dataset_split TRAINING.DATASET_SPLIT
|
190 |
+
Dataset split to use, with comma separated values if
|
191 |
+
provided
|
192 |
+
--training.data_dir TRAINING.DATA_DIR
|
193 |
+
Data dirs to use, with comma separated values if
|
194 |
+
provided
|
195 |
+
--training.data_files TRAINING.DATA_FILES
|
196 |
+
Data files to use, with comma separated values if
|
197 |
+
provided
|
198 |
+
--training.data_probs TRAINING.DATA_PROBS
|
199 |
+
Data sampling probabilities, with comma separated
|
200 |
+
values if provided
|
201 |
+
--training.streaming Whether to load dataset in streaming mode, used for
|
202 |
+
huge dataset
|
203 |
+
--training.num_workers TRAINING.NUM_WORKERS
|
204 |
+
Number of subprocesses to use for data loading. 0
|
205 |
+
means that the data will be loaded in the main
|
206 |
+
process.
|
207 |
+
--training.prefetch_factor TRAINING.PREFETCH_FACTOR
|
208 |
+
Number of batches loaded in advance by each worker.2
|
209 |
+
means there will be a total of 2 * num_workers batches
|
210 |
+
prefetched across all workers.
|
211 |
+
--training.data_parallel_replicate_degree TRAINING.DATA_PARALLEL_REPLICATE_DEGREE
|
212 |
+
The `data_parallel_replicate_degree` argument
|
213 |
+
specifies the degree of data parallelism for weight
|
214 |
+
replication. When this value is greater than 1,
|
215 |
+
weights will be replicated across
|
216 |
+
`data_parallel_replicate_degree` ranks. If
|
217 |
+
`data_parallel_shard_degree` is also greater than 1,
|
218 |
+
the parallelism method used is HSDP (Hybrid Sharded
|
219 |
+
Data Parallelism). Otherwise, the parallelism method
|
220 |
+
used is DDP (Distributed Data Parallelism). 1 means
|
221 |
+
disabled.
|
222 |
+
--training.data_parallel_shard_degree TRAINING.DATA_PARALLEL_SHARD_DEGREE
|
223 |
+
The `data_parallel_shard_degree` argument specifies
|
224 |
+
the degree of data parallelism for weight sharding.
|
225 |
+
When this value is greater than 1, weights will be
|
226 |
+
sharded across `data_parallel_shard_degree` ranks. If
|
227 |
+
`data_parallel_replicate_degree` is also greater than
|
228 |
+
1, the parallelism method used is HSDP (Hybrid Sharded
|
229 |
+
Data Parallelism). Otherwise, the parallelism method
|
230 |
+
used is FSDP (Fully Sharded Data Parallelism). -1
|
231 |
+
means leftover ranks will be used (After
|
232 |
+
DP_REPLICATE/SP/PP). Note that only
|
233 |
+
`data_parallel_shard_degree` can be negative. 1 means
|
234 |
+
disabled.
|
235 |
+
--training.enable_cpu_offload
|
236 |
+
Whether to apply CPU offloading of parameters,
|
237 |
+
gradients, and optimizer states in FSDP
|
238 |
+
--training.tensor_parallel_degree TRAINING.TENSOR_PARALLEL_DEGREE
|
239 |
+
Tensor Parallelism degree. 1 means disabled.
|
240 |
+
--training.disable_loss_parallel
|
241 |
+
Whether to apply loss parallel when sequence parallel
|
242 |
+
is enabled
|
243 |
+
--training.mixed_precision_param {bfloat16,float32}
|
244 |
+
torch dtype to use for parameters when applying mixed
|
245 |
+
precision via FSDP. This feature only takes effect
|
246 |
+
when data_parallel_shard_degree > 1
|
247 |
+
--training.mixed_precision_reduce {float32}
|
248 |
+
torch dtype to use for reductions when applying mixed
|
249 |
+
precision via FSDP. This feature only takes effect
|
250 |
+
when data_parallel_shard_degree > 1
|
251 |
+
--training.compile Whether to compile the model
|
252 |
+
--training.gc_freq TRAINING.GC_FREQ
|
253 |
+
Python garbage control scheduling interval, in steps
|
254 |
+
--training.seed TRAINING.SEED
|
255 |
+
Choose the base RNG seed used for training
|
256 |
+
--training.deterministic
|
257 |
+
Use deterministic algorithms wherever possible, may be
|
258 |
+
slower
|
259 |
+
--metrics.log_freq METRICS.LOG_FREQ
|
260 |
+
How often to log metrics to TensorBoard, in iterations
|
261 |
+
--metrics.enable_tensorboard
|
262 |
+
Whether to log metrics to TensorBoard
|
263 |
+
--metrics.disable_color_printing
|
264 |
+
Whether to disable color printing in logs
|
265 |
+
--metrics.save_tb_folder METRICS.SAVE_TB_FOLDER
|
266 |
+
Folder to dump TensorBoard states
|
267 |
+
--metrics.rank_0_only
|
268 |
+
Whether to save TensorBoard metrics only for rank 0 or
|
269 |
+
for all ranks. When pipeline_parallel_degree is > 1,
|
270 |
+
this option uses the 0th rank of the last stage
|
271 |
+
pipeline group, which is the only stage that computes
|
272 |
+
loss metrics.
|
273 |
+
--metrics.enable_wandb
|
274 |
+
Whether to log metrics to Weights & Biases
|
275 |
+
--experimental.enable_async_tensor_parallel
|
276 |
+
Whether to apply async tensor parallel (currently only
|
277 |
+
effective when compile is enabled)
|
278 |
+
--experimental.pipeline_parallel_degree EXPERIMENTAL.PIPELINE_PARALLEL_DEGREE
|
279 |
+
Pipeline Parallelism degree, or number of ranks. 1
|
280 |
+
means disabled. If using looped schedules, this still
|
281 |
+
specifies the number of physical ranks, not the number
|
282 |
+
of stages. Stages per rank are inferred from split
|
283 |
+
points degree, and schedule.
|
284 |
+
--experimental.pipeline_parallel_split_points EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS [EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS ...]
|
285 |
+
Specify comma-separated names of modules to use as the
|
286 |
+
beginning of a split point. e.g. "layers.0,layers.2"
|
287 |
+
will cause the model to be split into 3 stages, the
|
288 |
+
first containing all the layers up to layers.0, the
|
289 |
+
second containing layers.0 and up to layers.2, the
|
290 |
+
third containing layers.2 and all the remaining
|
291 |
+
layers. Note: fully-automated splitting may be enabled
|
292 |
+
in the future, but currently the split points must be
|
293 |
+
specified manually.
|
294 |
+
--experimental.pipeline_parallel_schedule EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE
|
295 |
+
Specify the Pipeline Parallel schedule to use. The
|
296 |
+
supported schedules are: https://github.com/pytorch/py
|
297 |
+
torch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/to
|
298 |
+
rch/distributed/pipelining/schedules.py#L2161. The
|
299 |
+
schedule must be compatible with the split points and
|
300 |
+
stages_per_rank. Looped schedules (e.g.
|
301 |
+
Interleaved1F1B) require specifying
|
302 |
+
pipeline_parallel_degree = number of ranks, and
|
303 |
+
split_points = number of stages - 1
|
304 |
+
--experimental.pipeline_parallel_schedule_csv EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE_CSV
|
305 |
+
Specify the path to the pipeline parallel schedule csv
|
306 |
+
file to use. The pipeline_parallel_schedule argument
|
307 |
+
must be either PipelineScheduleSingle,
|
308 |
+
PipelineScheduleMulti, or _PipelineScheduleRuntime.
|
309 |
+
--experimental.pipeline_parallel_microbatches EXPERIMENTAL.PIPELINE_PARALLEL_MICROBATCHES
|
310 |
+
How many microbatches to split the global training
|
311 |
+
batch into when using pipeline parallelism. The global
|
312 |
+
training batch size must be evenly divisible by the
|
313 |
+
number of microbatches. The default value will be the
|
314 |
+
number of pipeline stages, if unspecified.
|
315 |
+
--experimental.enable_compiled_autograd
|
316 |
+
Enable CompiledAutograd to compile the backward.
|
317 |
+
--experimental.context_parallel_degree EXPERIMENTAL.CONTEXT_PARALLEL_DEGREE
|
318 |
+
Context parallelism degree. 1 means disabled.
|
319 |
+
--experimental.context_parallel_rotate_method EXPERIMENTAL.CONTEXT_PARALLEL_ROTATE_METHOD
|
320 |
+
The collective to use in context parallel SDPA for kv
|
321 |
+
shards exchange. 'allgather' means to all-gather all
|
322 |
+
kv shards on ranks after the first sub-SDPA
|
323 |
+
computation, 'alltoall' means to all-to-all shuffle
|
324 |
+
the kv shards. The default value is 'allgather'.
|
325 |
+
--checkpoint.enable_checkpoint
|
326 |
+
Whether to enable checkpoint
|
327 |
+
--checkpoint.folder CHECKPOINT.FOLDER
|
328 |
+
The folder to store the checkpoints. When
|
329 |
+
enable_checkpoint is set to true, checkpoints will be
|
330 |
+
in {--job.dump_folder}/{--checkpoint.folder}.
|
331 |
+
--checkpoint.interval_type CHECKPOINT.INTERVAL_TYPE
|
332 |
+
Checkpointing interval unit of measurement ['step',
|
333 |
+
'seconds']
|
334 |
+
--checkpoint.interval CHECKPOINT.INTERVAL
|
335 |
+
Checkpointing interval, in steps or seconds depending
|
336 |
+
on --checkpoint.interval_type
|
337 |
+
--checkpoint.model_weights_only
|
338 |
+
When model_weights_only=True, only model weights will
|
339 |
+
be saved at the end of training. With this,
|
340 |
+
checkpoints can be loaded using `torch.load(...,
|
341 |
+
weights_only=True)` after conversion. When
|
342 |
+
model_weights_only=False, the full checkpoint will be
|
343 |
+
saved. A full checkpoint includes model, optimizer and
|
344 |
+
train_state, which can be used to resume training. The
|
345 |
+
default value is false.
|
346 |
+
--checkpoint.export_dtype {float16,bfloat16,float32}
|
347 |
+
Converts to the specified precision when training
|
348 |
+
completes and model_weights_only=true. Currently
|
349 |
+
supports float32, float16, and bfloat16. The default
|
350 |
+
value is float32.
|
351 |
+
--checkpoint.create_seed_checkpoint
|
352 |
+
Initializes the full model without applying
|
353 |
+
parallelisms, and then saves it as a seed checkpoint.
|
354 |
+
Note: requires user to call train.py without
|
355 |
+
specifying any parallelisms, e.g. NGPU=1. Could be
|
356 |
+
implemented as a separate script, but this way shares
|
357 |
+
more code.
|
358 |
+
--checkpoint.async_mode CHECKPOINT.ASYNC_MODE
|
359 |
+
Which async checkpoint mode to use. Currently there
|
360 |
+
are 3 different modes. 1. "disabled": synchronized
|
361 |
+
checkpointing will be used. 2. "async":
|
362 |
+
torch.distributed.checkpoint.async_save will be used.
|
363 |
+
1. "async_with_pinned_mem": this option utilizes a
|
364 |
+
dedicated pinned memory space and creates a separate
|
365 |
+
process for faster GPU->CPU transfer performance and
|
366 |
+
eliminating GIL contention. The cost is increased CPU
|
367 |
+
memory usage. If insufficient CPU memory is available,
|
368 |
+
performance may degrade due to memory paging. For most
|
369 |
+
users, "async" should suffice as the performance
|
370 |
+
overhead is typically small (on the order of tens of
|
371 |
+
seconds) compared to checkpointing frequency. This
|
372 |
+
mode can be employed to pursue near-zero checkpointing
|
373 |
+
times (e.g., < 1 second) given appropriate hardware
|
374 |
+
support such as ample CPU memory and fast PCIe.
|
375 |
+
"disabled" is the default mode.
|
376 |
+
--checkpoint.keep_latest_k CHECKPOINT.KEEP_LATEST_K
|
377 |
+
Keeps only the latest k checkpoints, and purging older
|
378 |
+
ones. If 0, keep all checkpoints. 0 is the default
|
379 |
+
value.
|
380 |
+
--checkpoint.load_step CHECKPOINT.LOAD_STEP
|
381 |
+
Load the checkpoint at the specified step. If -1, load
|
382 |
+
the latest checkpoint.
|
383 |
+
--float8.enable_float8_linear
|
384 |
+
If true, swaps `torch.nn.Linear` with `Float8Linear`.
|
385 |
+
This feature requires you to install 'torchao' which
|
386 |
+
can be found here: https://github.com/pytorch/ao
|
387 |
+
--float8.enable_fsdp_float8_all_gather
|
388 |
+
Whether enable float8 all-gather in FSDP
|
389 |
+
--float8.precompute_float8_dynamic_scale_for_fsdp
|
390 |
+
Whether precompute float8 scales dynamically for FSDP
|
391 |
+
--float8.scaling_type_input {dynamic,delayed}
|
392 |
+
float8 scaling for input, dynamic (default) or delayed
|
393 |
+
--float8.scaling_type_weight FLOAT8.SCALING_TYPE_WEIGHT
|
394 |
+
float8 scaling for input, dynamic (default) or delayed
|
395 |
+
--float8.scaling_type_grad_output FLOAT8.SCALING_TYPE_GRAD_OUTPUT
|
396 |
+
float8 scaling for input, dynamic (default) or delayed
|
397 |
+
--comm.init_timeout_seconds COMM.INIT_TIMEOUT_SECONDS
|
398 |
+
Timeout for communication operations, during
|
399 |
+
initialization and first train step.
|
400 |
+
--comm.train_timeout_seconds COMM.TRAIN_TIMEOUT_SECONDS
|
401 |
+
Timeout for communication operations after the first
|
402 |
+
train step -- usually a tighter bound than during
|
403 |
+
initialization.
|
404 |
+
--comm.trace_buf_size COMM.TRACE_BUF_SIZE
|
405 |
+
Flight recorder ring buffer size, >0 means recording
|
406 |
+
by default, 0 means disabled
|
407 |
+
--memory_estimation.enabled
|
408 |
+
Whether to estimate memory usage for FSDP
|
409 |
+
--memory_estimation.disable_fake_mode
|
410 |
+
Whether to estimate memory under FakeTensorMode
|
411 |
+
```
|
412 |
+
</details>
|
413 |
+
|
414 |
+
### Training with `torch.compile`
|
415 |
+
|
416 |
+
Starting from `torch 2.0`, `torch.compile` has been introduced as a new feature to seamlessly accelerate training processes.
|
417 |
+
In `flame`, one can simply enable `torch.compile` by adding `--training.compile` flag to your training script.
|
418 |
+
|
419 |
+
However, `fla` has integrated numerous fused kernels for acceleration, which may potentially conflict with `torch.compile`.
|
420 |
+
We are actively working on resolving these issues to make compilation transparent to users.
|
421 |
+
In the meantime, please ensure you are using the latest dependencies.
|
422 |
+
|
423 |
+
Specifically, **we recommend using `torch>=2.6` and `triton>=3.0`**.
|
424 |
+
|
425 |
+
### Training with multiple datasets
|
426 |
+
|
427 |
+
If you wish to train a model with all-round capabilities (e.g., code, math, and multilingual ability), it's necessary to train on multiple datasets.
|
428 |
+
`flame` allows training with multiple datasets easily.
|
429 |
+
For example, you can specify the following arguments to train on 6 datasets with different proportions:
|
430 |
+
|
431 |
+
```sh
|
432 |
+
--training.dataset HuggingFaceFW/fineweb-edu,opencsg/Fineweb-Edu-Chinese-V2.1,OpenCoder-LLM/opc-fineweb-code-corpus,math-ai/AutoMathText,EleutherAI/proof-pile-2,OpenCoder-LLM/opc-fineweb-math-corpus \
|
433 |
+
--training.data_probs 0.6,0.15,0.15,0.014,0.058,0.028 \
|
434 |
+
```
|
435 |
+
|
436 |
+
### ~Finalizing training~
|
437 |
+
|
438 |
+
> [!NOTE]
|
439 |
+
> We have done this conversion automatically in the training script since our latest updates.
|
440 |
+
|
441 |
+
Once training is complete, you may want to convert the distributed checkpoints (DCPs) into the 🤗 format for broader use.
|
442 |
+
To facilitate this, we provide a straightforward conversion script:
|
443 |
+
|
444 |
+
```sh
|
445 |
+
python -m flame.utils.convert_dcp_to_hf --path <path_to_model> --step <step> --config <path_to_config> --tokenizer <path_to_tokenizer>
|
446 |
+
```
|
447 |
+
After this, your model will be in the 🤗 format, ready to be shared or deployed.
|
448 |
+
You can then easily publish your model using the `huggingface_hub` for wider accessibility.
|
449 |
+
|
450 |
+
### Continual training
|
451 |
+
|
452 |
+
If you wish to build upon a strong pre-trained model (in 🤗 format) and continue training, we also offer a script to convert the 🤗 format model back into DCP format.
|
453 |
+
This allows you to seamlessly resume training with `flame`.
|
454 |
+
```sh
|
455 |
+
python -m flame.utils.convert_hf_to_dcp --model <path_to_hf> --checkpoint <path_to_dcp/checkpoint/step-0>
|
456 |
+
```
|
457 |
+
Here, `<path_to_dcp>` is the directory where your distributed checkpoints will be stored.
|
458 |
+
The checkpoint is intentionally saved at `<step-0>` within the checkpoint folder to ensure it is loadable by `flame` during the initial training step, similar to how a seed checkpoint is handled.
|
459 |
+
|
460 |
+
Once the conversion is complete, you can proceed with training using `flame` as usual, continuing from where the pretrained model left off.
|
461 |
+
|
462 |
+
## Multi-node training
|
463 |
+
|
464 |
+
If you have access to multi-node GPUs, consider leveraging them for optimal performance.
|
465 |
+
This process is straightforward and well-documented in the PyTorch [docs](https://pytorch.org/docs/stable/elastic/run.html).
|
466 |
+
|
467 |
+
To set up multi-node training:
|
468 |
+
* Set the environment variables `MASTER_ADDR=<ip>` and `MASTER_PORT=<port>` before running the training script across all nodes.
|
469 |
+
* If you're using a job scheduler like Slurm, it will handle these variables for you.
|
470 |
+
|
471 |
+
`torchtitan` provides a [Slurm script](https://github.com/pytorch/torchtitan/blob/main/multinode_trainer.slurm) for multi-node training, which you can use as a reference or starting point.
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TransformerForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attn_impl": "parallel_softpick_attn",
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"elementwise_affine": true,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"fuse_cross_entropy": true,
|
11 |
+
"fuse_norm": true,
|
12 |
+
"fuse_swiglu": true,
|
13 |
+
"hidden_act": "swish",
|
14 |
+
"hidden_ratio": 4,
|
15 |
+
"hidden_size": 1024,
|
16 |
+
"initializer_range": 0.006,
|
17 |
+
"intermediate_size": null,
|
18 |
+
"max_position_embeddings": 8192,
|
19 |
+
"model_type": "transformer",
|
20 |
+
"norm_eps": 1e-06,
|
21 |
+
"num_heads": 16,
|
22 |
+
"num_hidden_layers": 24,
|
23 |
+
"num_kv_heads": null,
|
24 |
+
"qk_norm": false,
|
25 |
+
"qkv_bias": false,
|
26 |
+
"rope_theta": 10000.0,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.51.3",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 32000,
|
32 |
+
"window_size": null
|
33 |
+
}
|
configs/delta_net_1B.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn": null,
|
3 |
+
"attn_mode": "chunk",
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"conv_size": 4,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"expand_k": 1,
|
8 |
+
"expand_v": 1,
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"hidden_act": "swish",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 2048,
|
14 |
+
"initializer_range": 0.006,
|
15 |
+
"intermediate_size": null,
|
16 |
+
"model_type": "delta_net",
|
17 |
+
"norm_eps": 1e-06,
|
18 |
+
"num_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"pad_token_id": 2,
|
21 |
+
"qk_activation": "silu",
|
22 |
+
"qk_norm": "l2",
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"use_beta": true,
|
25 |
+
"use_cache": true,
|
26 |
+
"use_gate": false,
|
27 |
+
"use_output_norm": true,
|
28 |
+
"use_short_conv": true
|
29 |
+
}
|
configs/delta_net_340M.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"conv_size": 4,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"hidden_act": "swish",
|
10 |
+
"hidden_ratio": 4,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.006,
|
13 |
+
"intermediate_size": null,
|
14 |
+
"model_type": "delta_net",
|
15 |
+
"norm_eps": 1e-06,
|
16 |
+
"norm_first": false,
|
17 |
+
"num_heads": 8,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"qk_activation": "silu",
|
20 |
+
"qk_norm": "l2",
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"use_beta": true,
|
23 |
+
"use_cache": true,
|
24 |
+
"use_gate": false,
|
25 |
+
"use_output_norm": true,
|
26 |
+
"use_short_conv": true
|
27 |
+
}
|
configs/gla_340M.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.006,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"model_type": "gla",
|
16 |
+
"num_heads": 4,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"norm_eps": 1e-06,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"use_cache": true,
|
21 |
+
"use_gk": true,
|
22 |
+
"use_gv": false,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
configs/gla_7B.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn": null,
|
3 |
+
"attn_mode": "chunk",
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.006,
|
14 |
+
"intermediate_size": 11008,
|
15 |
+
"model_type": "gla",
|
16 |
+
"norm_eps": 1e-06,
|
17 |
+
"num_heads": 16,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"use_cache": true,
|
21 |
+
"use_gk": true,
|
22 |
+
"use_gv": false,
|
23 |
+
"use_output_gate": true,
|
24 |
+
"use_short_conv": false
|
25 |
+
}
|
configs/gsa_340M.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"conv_size": 4,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"expand_k": 1,
|
6 |
+
"expand_v": 1,
|
7 |
+
"elementwise_affine": false,
|
8 |
+
"feature_map": "swish",
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"gate_logit_normalizer": 4,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.006,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"model_type": "gsa",
|
18 |
+
"num_heads": 4,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"num_slots": 64,
|
21 |
+
"norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"use_cache": true,
|
25 |
+
"use_norm": true,
|
26 |
+
"use_output_gate": true,
|
27 |
+
"use_rope": false,
|
28 |
+
"use_short_conv": false
|
29 |
+
}
|
configs/hgrn2_340M.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"expand_ratio": 128,
|
6 |
+
"fuse_cross_entropy": true,
|
7 |
+
"fuse_norm": true,
|
8 |
+
"hidden_act": "swish",
|
9 |
+
"hidden_ratio": 4,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.006,
|
12 |
+
"intermediate_size": null,
|
13 |
+
"model_type": "hgrn2",
|
14 |
+
"num_heads": 8,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"norm_eps": 1e-06,
|
17 |
+
"tie_word_embeddings": false,
|
18 |
+
"use_cache": true,
|
19 |
+
"vocab_size": 32000
|
20 |
+
}
|
configs/rectified_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "naive_rectified_attn"
|
19 |
+
}
|
configs/rectified_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_rectified_attn"
|
19 |
+
}
|
configs/softpick_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "naive_softpick_attn"
|
19 |
+
}
|
configs/softpick_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_softpick_attn"
|
19 |
+
}
|
configs/transformer_120M.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000
|
18 |
+
}
|
configs/transformer_1B.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"elementwise_affine": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"fuse_swiglu": true,
|
8 |
+
"hidden_act": "swish",
|
9 |
+
"hidden_ratio": 4,
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.006,
|
12 |
+
"intermediate_size": null,
|
13 |
+
"max_position_embeddings": 8192,
|
14 |
+
"model_type": "transformer",
|
15 |
+
"norm_eps": 1e-06,
|
16 |
+
"num_heads": 32,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"num_kv_heads": null,
|
19 |
+
"pad_token_id": 2,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"tie_word_embeddings": false
|
22 |
+
}
|
configs/transformer_340M.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000
|
18 |
+
}
|
configs/transformer_7B.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_ratio": 4,
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.006,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"model_type": "transformer",
|
13 |
+
"norm_eps": 1e-06,
|
14 |
+
"num_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_kv_heads": 8,
|
17 |
+
"rope_theta": 10000.0,
|
18 |
+
"tie_word_embeddings": false,
|
19 |
+
"use_cache": true,
|
20 |
+
"window_size": null
|
21 |
+
}
|
configs/vanilla_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "naive_attn"
|
19 |
+
}
|
configs/vanilla_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_attn"
|
19 |
+
}
|
download_checkpoint.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from huggingface_hub import HfApi, HfFolder, snapshot_download
|
4 |
+
|
5 |
+
def main(args):
|
6 |
+
api = HfApi()
|
7 |
+
token = HfFolder.get_token()
|
8 |
+
experiment_checkpoint_folder = os.path.join(args.experiment_checkpoint_folder, "checkpoint")
|
9 |
+
os.makedirs(
|
10 |
+
experiment_checkpoint_folder,
|
11 |
+
exist_ok=True
|
12 |
+
)
|
13 |
+
|
14 |
+
snapshot_download(
|
15 |
+
repo_id=args.repo_id,
|
16 |
+
token=token,
|
17 |
+
local_dir=experiment_checkpoint_folder,
|
18 |
+
)
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser(description="Download a checkpoint from Hugging Face Hub.")
|
22 |
+
parser.add_argument(
|
23 |
+
"--repo_id",
|
24 |
+
type=str,
|
25 |
+
required=True,
|
26 |
+
help="The repository ID on Hugging Face Hub.",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--experiment_checkpoint_folder",
|
30 |
+
type=str,
|
31 |
+
required=True,
|
32 |
+
help="The local directory to save the downloaded checkpoint.",
|
33 |
+
)
|
34 |
+
args = parser.parse_args()
|
35 |
+
main(args)
|
fla/__init__.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from fla.layers import (
|
4 |
+
ABCAttention,
|
5 |
+
Attention,
|
6 |
+
BasedLinearAttention,
|
7 |
+
BitAttention,
|
8 |
+
DeltaNet,
|
9 |
+
GatedDeltaNet,
|
10 |
+
GatedDeltaProduct,
|
11 |
+
GatedLinearAttention,
|
12 |
+
GatedSlotAttention,
|
13 |
+
HGRN2Attention,
|
14 |
+
HGRNAttention,
|
15 |
+
LightNetAttention,
|
16 |
+
LinearAttention,
|
17 |
+
MultiScaleRetention,
|
18 |
+
NativeSparseAttention,
|
19 |
+
ReBasedLinearAttention,
|
20 |
+
RWKV6Attention,
|
21 |
+
RWKV7Attention
|
22 |
+
)
|
23 |
+
from fla.models import (
|
24 |
+
ABCForCausalLM,
|
25 |
+
ABCModel,
|
26 |
+
BitNetForCausalLM,
|
27 |
+
BitNetModel,
|
28 |
+
DeltaNetForCausalLM,
|
29 |
+
DeltaNetModel,
|
30 |
+
GatedDeltaNetForCausalLM,
|
31 |
+
GatedDeltaNetModel,
|
32 |
+
GatedDeltaProductForCausalLM,
|
33 |
+
GatedDeltaProductModel,
|
34 |
+
GLAForCausalLM,
|
35 |
+
GLAModel,
|
36 |
+
GSAForCausalLM,
|
37 |
+
GSAModel,
|
38 |
+
HGRN2ForCausalLM,
|
39 |
+
HGRN2Model,
|
40 |
+
HGRNForCausalLM,
|
41 |
+
LightNetForCausalLM,
|
42 |
+
LightNetModel,
|
43 |
+
LinearAttentionForCausalLM,
|
44 |
+
LinearAttentionModel,
|
45 |
+
NSAForCausalLM,
|
46 |
+
NSAModel,
|
47 |
+
RetNetForCausalLM,
|
48 |
+
RetNetModel,
|
49 |
+
RWKV6ForCausalLM,
|
50 |
+
RWKV6Model,
|
51 |
+
RWKV7ForCausalLM,
|
52 |
+
RWKV7Model,
|
53 |
+
TransformerForCausalLM,
|
54 |
+
TransformerModel
|
55 |
+
)
|
56 |
+
|
57 |
+
__all__ = [
|
58 |
+
'ABCAttention',
|
59 |
+
'Attention',
|
60 |
+
'BasedLinearAttention',
|
61 |
+
'BitAttention',
|
62 |
+
'DeltaNet',
|
63 |
+
'GatedDeltaNet',
|
64 |
+
'GatedDeltaProduct',
|
65 |
+
'GatedLinearAttention',
|
66 |
+
'GatedSlotAttention',
|
67 |
+
'HGRNAttention',
|
68 |
+
'HGRN2Attention',
|
69 |
+
'LightNetAttention',
|
70 |
+
'LinearAttention',
|
71 |
+
'MultiScaleRetention',
|
72 |
+
'NativeSparseAttention',
|
73 |
+
'ReBasedLinearAttention',
|
74 |
+
'RWKV6Attention',
|
75 |
+
'RWKV7Attention',
|
76 |
+
'ABCForCausalLM',
|
77 |
+
'ABCModel',
|
78 |
+
'BitNetForCausalLM',
|
79 |
+
'BitNetModel',
|
80 |
+
'DeltaNetForCausalLM',
|
81 |
+
'DeltaNetModel',
|
82 |
+
'GatedDeltaNetForCausalLM',
|
83 |
+
'GatedDeltaNetModel',
|
84 |
+
'GatedDeltaProductForCausalLM',
|
85 |
+
'GatedDeltaProductModel',
|
86 |
+
'GLAForCausalLM',
|
87 |
+
'GLAModel',
|
88 |
+
'GSAForCausalLM',
|
89 |
+
'GSAModel',
|
90 |
+
'HGRNForCausalLM',
|
91 |
+
'HGRNModel',
|
92 |
+
'HGRN2ForCausalLM',
|
93 |
+
'HGRN2Model',
|
94 |
+
'LightNetForCausalLM',
|
95 |
+
'LightNetModel',
|
96 |
+
'LinearAttentionForCausalLM',
|
97 |
+
'LinearAttentionModel',
|
98 |
+
'NSAForCausalLM',
|
99 |
+
'NSAModel',
|
100 |
+
'RetNetForCausalLM',
|
101 |
+
'RetNetModel',
|
102 |
+
'RWKV6ForCausalLM',
|
103 |
+
'RWKV6Model',
|
104 |
+
'RWKV7ForCausalLM',
|
105 |
+
'RWKV7Model',
|
106 |
+
'TransformerForCausalLM',
|
107 |
+
'TransformerModel',
|
108 |
+
]
|
109 |
+
|
110 |
+
__version__ = '0.1.2'
|
fla/layers/gla.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.activations import ACT2FN
|
16 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from transformers.processing_utils import Unpack
|
20 |
+
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
|
23 |
+
|
24 |
+
class GatedLinearAttention(nn.Module):
|
25 |
+
r"""
|
26 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
27 |
+
|
28 |
+
Args:
|
29 |
+
mode (str, Optional):
|
30 |
+
Which GLA kernel to use.
|
31 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
32 |
+
Default: `chunk`.
|
33 |
+
hidden_size (int, Optional):
|
34 |
+
The hidden size of the input. Default: 1024.
|
35 |
+
expand_k (float, Optional):
|
36 |
+
The expansion ratio for the key dim. Default: 0.5.
|
37 |
+
expand_v (float, Optional):
|
38 |
+
The expansion ratio for the value dim. Default: 1.0.
|
39 |
+
num_heads (int, Optional):
|
40 |
+
The number of heads. Default: 4.
|
41 |
+
num_kv_heads (int, Optional):
|
42 |
+
The number of key/value heads, used for MQA. Default: None.
|
43 |
+
feature_map (str, Optional):
|
44 |
+
Feature map function applied to queries/keys. Default: None.
|
45 |
+
use_short_conv (bool, Optional):
|
46 |
+
Whether to use short convolutions. Default: `False`.
|
47 |
+
conv_size (int, Optional):
|
48 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
49 |
+
conv_bias (bool, Optional):
|
50 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
51 |
+
use_output_gate (bool, Optional):
|
52 |
+
Whether to use output gate. Default: `True`.
|
53 |
+
gate_fn (str, Optional):
|
54 |
+
The activation function for the output gate. Default: `swish`.
|
55 |
+
elementwise_affine (bool, Optional):
|
56 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
57 |
+
norm_eps (float, Optional):
|
58 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
59 |
+
gate_logit_normalizer (int, Optional):
|
60 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
61 |
+
gate_low_rank_dim (int, Optional):
|
62 |
+
The low rank dim for the gate projection. Default: 16.
|
63 |
+
clamp_min (float, Optional):
|
64 |
+
The minimum value for the gate logits. Default: None.
|
65 |
+
fuse_norm (bool, Optional):
|
66 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
67 |
+
layer_idx (int, Optional):
|
68 |
+
The index of the layer. Default: None.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
mode: str = 'chunk',
|
74 |
+
hidden_size: int = 1024,
|
75 |
+
expand_k: float = 0.5,
|
76 |
+
expand_v: float = 1.0,
|
77 |
+
num_heads: int = 4,
|
78 |
+
num_kv_heads: Optional[int] = None,
|
79 |
+
feature_map: Optional[str] = None,
|
80 |
+
use_short_conv: bool = False,
|
81 |
+
conv_size: int = 4,
|
82 |
+
conv_bias: bool = False,
|
83 |
+
use_output_gate: bool = True,
|
84 |
+
gate_fn: str = 'swish',
|
85 |
+
elementwise_affine: Optional[bool] = True,
|
86 |
+
norm_eps: float = 1e-5,
|
87 |
+
gate_logit_normalizer: int = 16,
|
88 |
+
gate_low_rank_dim: int = 16,
|
89 |
+
clamp_min: Optional[float] = None,
|
90 |
+
fuse_norm: bool = True,
|
91 |
+
layer_idx: int = None,
|
92 |
+
) -> GatedLinearAttention:
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
self.mode = mode
|
96 |
+
self.hidden_size = hidden_size
|
97 |
+
self.expand_k = expand_k
|
98 |
+
self.expand_v = expand_v
|
99 |
+
self.num_heads = num_heads
|
100 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
101 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
102 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
103 |
+
|
104 |
+
self.use_short_conv = use_short_conv
|
105 |
+
self.conv_size = conv_size
|
106 |
+
self.conv_bias = conv_bias
|
107 |
+
self.use_output_gate = use_output_gate
|
108 |
+
|
109 |
+
self.key_dim = int(hidden_size * expand_k)
|
110 |
+
self.value_dim = int(hidden_size * expand_v)
|
111 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
112 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
113 |
+
self.clamp_min = clamp_min
|
114 |
+
self.layer_idx = layer_idx
|
115 |
+
|
116 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
117 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
118 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
119 |
+
|
120 |
+
self.head_k_dim = self.key_dim // num_heads
|
121 |
+
self.head_v_dim = self.value_dim // num_heads
|
122 |
+
|
123 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
124 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
125 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
126 |
+
if self.use_output_gate:
|
127 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
128 |
+
|
129 |
+
if use_short_conv:
|
130 |
+
self.conv_size = conv_size
|
131 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
132 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
133 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
134 |
+
|
135 |
+
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
136 |
+
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
|
137 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
138 |
+
|
139 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
140 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
141 |
+
hidden_size=self.head_v_dim,
|
142 |
+
elementwise_affine=elementwise_affine,
|
143 |
+
eps=norm_eps
|
144 |
+
)
|
145 |
+
self.fuse_norm_and_gate = True
|
146 |
+
else:
|
147 |
+
self.fuse_norm_and_gate = False
|
148 |
+
self.g_norm = RMSNorm(
|
149 |
+
hidden_size=self.head_v_dim,
|
150 |
+
elementwise_affine=elementwise_affine,
|
151 |
+
eps=norm_eps
|
152 |
+
)
|
153 |
+
self.gate_fn = ACT2FN[gate_fn]
|
154 |
+
|
155 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
156 |
+
|
157 |
+
def forward(
|
158 |
+
self,
|
159 |
+
hidden_states: torch.Tensor,
|
160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
161 |
+
past_key_values: Optional[Cache] = None,
|
162 |
+
use_cache: Optional[bool] = False,
|
163 |
+
output_attentions: Optional[bool] = False,
|
164 |
+
**kwargs: Unpack[Dict]
|
165 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
166 |
+
if attention_mask is not None:
|
167 |
+
assert len(attention_mask.shape) == 2, (
|
168 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
169 |
+
"for padding purposes (0 indicating padding). "
|
170 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
171 |
+
)
|
172 |
+
|
173 |
+
# launching the triton kernel for just one token will actually be slower
|
174 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
175 |
+
|
176 |
+
last_state = None
|
177 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
178 |
+
last_state = past_key_values[self.layer_idx]
|
179 |
+
|
180 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
181 |
+
if self.use_short_conv:
|
182 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
183 |
+
if last_state is not None:
|
184 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
185 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
186 |
+
q, conv_state_q = self.q_conv1d(
|
187 |
+
x=self.q_proj(hidden_states),
|
188 |
+
mask=conv_mask,
|
189 |
+
cache=conv_state_q,
|
190 |
+
output_final_state=use_cache,
|
191 |
+
cu_seqlens=cu_seqlens
|
192 |
+
)
|
193 |
+
k, conv_state_k = self.k_conv1d(
|
194 |
+
x=self.k_proj(hidden_states),
|
195 |
+
mask=conv_mask,
|
196 |
+
cache=conv_state_k,
|
197 |
+
output_final_state=use_cache,
|
198 |
+
cu_seqlens=cu_seqlens
|
199 |
+
)
|
200 |
+
v, conv_state_v = self.v_conv1d(
|
201 |
+
x=self.v_proj(hidden_states),
|
202 |
+
mask=conv_mask,
|
203 |
+
cache=conv_state_v,
|
204 |
+
output_final_state=use_cache,
|
205 |
+
cu_seqlens=cu_seqlens
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
q = self.q_proj(hidden_states)
|
209 |
+
k = self.k_proj(hidden_states)
|
210 |
+
v = self.v_proj(hidden_states)
|
211 |
+
gk = self.gk_proj(hidden_states)
|
212 |
+
|
213 |
+
if self.feature_map_fn is not None:
|
214 |
+
q, k = map(self.feature_map_fn, (q, k))
|
215 |
+
# dealing with left-padding
|
216 |
+
if attention_mask is not None:
|
217 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
218 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
219 |
+
if self.num_kv_groups > 1:
|
220 |
+
k, gk = (repeat(x, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_k_dim) for x in (k, gk))
|
221 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_v_dim)
|
222 |
+
else:
|
223 |
+
k, gk = (rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim) for x in (k, gk))
|
224 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
225 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
226 |
+
|
227 |
+
if self.clamp_min is not None:
|
228 |
+
gk = torch.clamp_min(gk, self.clamp_min)
|
229 |
+
|
230 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
231 |
+
if mode == 'fused_recurrent':
|
232 |
+
o, recurrent_state = fused_recurrent_gla(
|
233 |
+
q=q,
|
234 |
+
k=k,
|
235 |
+
v=v,
|
236 |
+
gk=gk,
|
237 |
+
initial_state=recurrent_state,
|
238 |
+
output_final_state=use_cache,
|
239 |
+
cu_seqlens=cu_seqlens,
|
240 |
+
head_first=False
|
241 |
+
)
|
242 |
+
elif mode == 'fused_chunk':
|
243 |
+
o, recurrent_state = fused_chunk_gla(
|
244 |
+
q=q,
|
245 |
+
k=k,
|
246 |
+
v=v,
|
247 |
+
g=gk,
|
248 |
+
initial_state=recurrent_state,
|
249 |
+
output_final_state=use_cache,
|
250 |
+
head_first=False
|
251 |
+
)
|
252 |
+
elif mode == 'chunk':
|
253 |
+
o, recurrent_state = chunk_gla(
|
254 |
+
q=q,
|
255 |
+
k=k,
|
256 |
+
v=v,
|
257 |
+
g=gk,
|
258 |
+
initial_state=recurrent_state,
|
259 |
+
output_final_state=use_cache,
|
260 |
+
cu_seqlens=cu_seqlens,
|
261 |
+
head_first=False
|
262 |
+
)
|
263 |
+
else:
|
264 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
265 |
+
|
266 |
+
if past_key_values is not None:
|
267 |
+
past_key_values.update(
|
268 |
+
recurrent_state=recurrent_state,
|
269 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
270 |
+
layer_idx=self.layer_idx,
|
271 |
+
offset=q.shape[1]
|
272 |
+
)
|
273 |
+
|
274 |
+
if self.use_output_gate:
|
275 |
+
g = self.g_proj(hidden_states)
|
276 |
+
if self.fuse_norm_and_gate:
|
277 |
+
g = rearrange(g, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
278 |
+
o = self.g_norm_swish_gate(o, g)
|
279 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
280 |
+
else:
|
281 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
282 |
+
o = o * self.gate_fn(g)
|
283 |
+
else:
|
284 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
285 |
+
o = self.o_proj(o)
|
286 |
+
|
287 |
+
return o, None, past_key_values
|
288 |
+
|
289 |
+
def state_size(self, **kwargs) -> int:
|
290 |
+
state_size = self.key_dim * self.head_v_dim
|
291 |
+
for module in self.children():
|
292 |
+
if isinstance(module, ShortConvolution):
|
293 |
+
state_size += module.state_size
|
294 |
+
return state_size
|
fla/layers/rwkv7.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from torch.nn import functional as F
|
12 |
+
|
13 |
+
from fla.layers.rwkv6 import LoRA
|
14 |
+
from fla.modules import GroupNorm
|
15 |
+
from fla.modules.l2norm import l2_norm
|
16 |
+
from fla.ops.rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class RWKV7Attention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mode: str = 'chunk',
|
27 |
+
hidden_size: int = 1024,
|
28 |
+
head_dim: Optional[int] = 64,
|
29 |
+
num_heads: Optional[int] = None,
|
30 |
+
decay_low_rank_dim: int = 64,
|
31 |
+
gate_low_rank_dim: int = 128,
|
32 |
+
a_low_rank_dim: int = 64,
|
33 |
+
v_low_rank_dim: int = 16,
|
34 |
+
elementwise_affine: Optional[bool] = True,
|
35 |
+
norm_eps: float = 1e-5,
|
36 |
+
layer_idx: int = None,
|
37 |
+
fuse_norm: bool = False,
|
38 |
+
value_dim: int = None,
|
39 |
+
**kwargs
|
40 |
+
) -> RWKV7Attention:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.mode = mode
|
44 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not supported mode `{mode}`."
|
45 |
+
self.hidden_size = hidden_size
|
46 |
+
|
47 |
+
self.key_dim = hidden_size
|
48 |
+
self.value_dim = value_dim if value_dim is not None else hidden_size
|
49 |
+
if head_dim is None and num_heads is None:
|
50 |
+
raise ValueError("Either `head_dim` or `num_heads` must be specified.")
|
51 |
+
elif head_dim is not None:
|
52 |
+
self.head_dim = head_dim
|
53 |
+
self.num_heads = int(hidden_size // head_dim)
|
54 |
+
elif num_heads is not None:
|
55 |
+
self.head_dim = int(hidden_size // num_heads)
|
56 |
+
self.num_heads = num_heads
|
57 |
+
self.head_v_dim = int(self.value_dim // self.num_heads)
|
58 |
+
|
59 |
+
self.decay_low_rank_dim = decay_low_rank_dim
|
60 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
61 |
+
self.a_low_rank_dim = a_low_rank_dim
|
62 |
+
self.v_low_rank_dim = v_low_rank_dim
|
63 |
+
self.layer_idx = layer_idx
|
64 |
+
self.fuse_norm = fuse_norm
|
65 |
+
|
66 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
67 |
+
|
68 |
+
self.x_x = nn.Parameter(torch.zeros(6, hidden_size))
|
69 |
+
|
70 |
+
self.k_k = nn.Parameter(torch.zeros(self.key_dim))
|
71 |
+
self.k_a = nn.Parameter(torch.zeros(self.key_dim))
|
72 |
+
self.r_k = nn.Parameter(torch.zeros(self.num_heads, self.head_dim))
|
73 |
+
|
74 |
+
self.r_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
75 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
76 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
77 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
78 |
+
|
79 |
+
self.w_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=decay_low_rank_dim, activation='tanh')
|
80 |
+
if self.layer_idx != 0:
|
81 |
+
self.v_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=v_low_rank_dim, activation=None)
|
82 |
+
self.a_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=a_low_rank_dim, activation=None)
|
83 |
+
self.g_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=gate_low_rank_dim, activation='sigmoid', bias=False)
|
84 |
+
|
85 |
+
if self.fuse_norm:
|
86 |
+
self.g_norm = GroupNorm(
|
87 |
+
num_groups=self.num_heads,
|
88 |
+
hidden_size=self.value_dim,
|
89 |
+
elementwise_affine=elementwise_affine,
|
90 |
+
eps=self.head_dim*norm_eps,
|
91 |
+
bias=True,
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
self.g_norm = nn.GroupNorm(
|
95 |
+
num_groups=self.num_heads,
|
96 |
+
num_channels=self.value_dim,
|
97 |
+
eps=self.head_dim*norm_eps,
|
98 |
+
affine=elementwise_affine
|
99 |
+
)
|
100 |
+
|
101 |
+
self.apply(self._initialize_weights)
|
102 |
+
|
103 |
+
def _initialize_weights(self, module: nn.Module):
|
104 |
+
if getattr(module, "_is_hf_initialized", False):
|
105 |
+
return
|
106 |
+
if isinstance(module, nn.Linear):
|
107 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
108 |
+
if module.bias is not None:
|
109 |
+
nn.init.zeros_(module.bias)
|
110 |
+
if isinstance(module, nn.Parameter):
|
111 |
+
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
|
112 |
+
module._is_hf_initialized = True
|
113 |
+
|
114 |
+
def forward(
|
115 |
+
self,
|
116 |
+
hidden_states: torch.Tensor,
|
117 |
+
attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
past_key_values: Optional[Cache] = None,
|
119 |
+
use_cache: Optional[bool] = False,
|
120 |
+
output_attentions: Optional[bool] = False,
|
121 |
+
v_first: torch.Tensor = None,
|
122 |
+
**kwargs
|
123 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
124 |
+
if attention_mask is not None:
|
125 |
+
assert len(attention_mask.shape) == 2, (
|
126 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
127 |
+
"for padding purposes (0 indicating padding). "
|
128 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
129 |
+
)
|
130 |
+
|
131 |
+
batch_size, seq_len, _ = hidden_states.shape
|
132 |
+
|
133 |
+
if self.training:
|
134 |
+
# if training, use chunk mode no matter how short the sequence is
|
135 |
+
mode = 'chunk'
|
136 |
+
else:
|
137 |
+
# launching the triton kernel for just one token will actually be slower
|
138 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
139 |
+
|
140 |
+
last_state = None
|
141 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
142 |
+
last_state = past_key_values[self.layer_idx]
|
143 |
+
|
144 |
+
if attention_mask is not None:
|
145 |
+
hidden_states = hidden_states.mul(attention_mask[:, -hidden_states.shape[-2]:, None])
|
146 |
+
if hidden_states.shape[1] == 1 and last_state is not None:
|
147 |
+
shifted = last_state['conv_state'].unsqueeze(1)
|
148 |
+
else:
|
149 |
+
shifted = self.time_shift(hidden_states)
|
150 |
+
if last_state is not None:
|
151 |
+
shifted[:, 0] = last_state['conv_state']
|
152 |
+
|
153 |
+
# [batch_size, seq_len, hidden_size]
|
154 |
+
delta = shifted - hidden_states
|
155 |
+
xr, xw, xk, xv, xa, xg = hidden_states.addcmul(delta, self.x_x.view(6, 1, 1, -1)).unbind(0)
|
156 |
+
|
157 |
+
r = self.r_proj(xr)
|
158 |
+
# -math.exp(-0.5) = -0.6065306597126334
|
159 |
+
# I think .to(torch.float) is unnecessary here, since we calculate lora in bloat16
|
160 |
+
# when we apply sigmoid, bf16 input will not have numerical issue
|
161 |
+
# FIXME: check if we can remove .to(torch.float)
|
162 |
+
w = -0.6065306597126334 * self.w_lora(xw).to(torch.float).sigmoid()
|
163 |
+
|
164 |
+
k = self.k_proj(xk)
|
165 |
+
v = self.v_proj(xv)
|
166 |
+
|
167 |
+
if self.layer_idx == 0:
|
168 |
+
v_first = v
|
169 |
+
else:
|
170 |
+
v = torch.lerp(v, v_first, self.v_lora(xv).sigmoid())
|
171 |
+
a = self.a_lora(xa).sigmoid()
|
172 |
+
g = self.g_lora(xg)
|
173 |
+
|
174 |
+
if self.fuse_norm:
|
175 |
+
kk = l2_norm(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim))
|
176 |
+
else:
|
177 |
+
kk = F.normalize(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim), dim=-1, p=2.0)
|
178 |
+
|
179 |
+
k = k.addcmul(k * (a - 1), self.k_a)
|
180 |
+
|
181 |
+
# dealing with left-padding
|
182 |
+
if attention_mask is not None:
|
183 |
+
v = v * attention_mask[:, -v.shape[-2]:, None]
|
184 |
+
r, w, k, a = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_dim), (r, w, k, a))
|
185 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
186 |
+
|
187 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
188 |
+
|
189 |
+
rwkv7_fn = chunk_rwkv7 if mode == 'chunk' else fused_recurrent_rwkv7
|
190 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
191 |
+
o, recurrent_state = rwkv7_fn(
|
192 |
+
r=r,
|
193 |
+
w=w,
|
194 |
+
k=k,
|
195 |
+
v=v,
|
196 |
+
a=-kk,
|
197 |
+
b=kk * a,
|
198 |
+
scale=1.,
|
199 |
+
initial_state=recurrent_state,
|
200 |
+
output_final_state=use_cache,
|
201 |
+
cu_seqlens=cu_seqlens,
|
202 |
+
head_first=False
|
203 |
+
)
|
204 |
+
|
205 |
+
if past_key_values is not None:
|
206 |
+
past_key_values.update(
|
207 |
+
recurrent_state=recurrent_state,
|
208 |
+
conv_state=hidden_states[:, -1],
|
209 |
+
layer_idx=self.layer_idx,
|
210 |
+
offset=r.shape[1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.fuse_norm:
|
214 |
+
o = self.g_norm(rearrange(o, '... h d -> ... (h d)'))
|
215 |
+
else:
|
216 |
+
o = self.g_norm(rearrange(o, 'b t h d -> (b t) (h d)')).view(batch_size, seq_len, -1)
|
217 |
+
|
218 |
+
o = o + ((r * k * self.r_k).sum(-1, keepdim=True) * v).view(batch_size, seq_len, -1)
|
219 |
+
o = self.o_proj(o * g)
|
220 |
+
|
221 |
+
return o, None, past_key_values, v_first
|
fla/utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import functools
|
5 |
+
import os
|
6 |
+
from enum import Enum
|
7 |
+
from functools import lru_cache
|
8 |
+
from typing import Any, Callable, Dict, Literal, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import triton
|
12 |
+
from packaging import version
|
13 |
+
|
14 |
+
|
15 |
+
def tensor_cache(
|
16 |
+
fn: Callable[..., torch.Tensor]
|
17 |
+
) -> Callable[..., torch.Tensor]:
|
18 |
+
"""
|
19 |
+
A decorator that caches the most recent result of a function with tensor inputs.
|
20 |
+
|
21 |
+
This decorator will store the output of the decorated function for the most recent set of input tensors.
|
22 |
+
If the function is called again with the same input tensors, it will return the cached result.
|
23 |
+
|
24 |
+
|
25 |
+
Args:
|
26 |
+
fn (Callable[..., torch.Tensor]):
|
27 |
+
The function to be decorated. It should take tensor inputs and return tensor outputs.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
Callable[..., torch.Tensor]:
|
31 |
+
A wrapped version of the input function with single-entry caching.
|
32 |
+
"""
|
33 |
+
last_args: Optional[Tuple] = None
|
34 |
+
last_kwargs: Optional[Dict] = None
|
35 |
+
last_result: Any = None
|
36 |
+
|
37 |
+
@functools.wraps(fn)
|
38 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
39 |
+
nonlocal last_args, last_kwargs, last_result
|
40 |
+
|
41 |
+
if last_args is not None and last_kwargs is not None:
|
42 |
+
if len(args) == len(last_args) and len(kwargs) == len(last_kwargs):
|
43 |
+
if all(a is b for a, b in zip(args, last_args)) and \
|
44 |
+
all(k in last_kwargs and v is last_kwargs[k] for k, v in kwargs.items()):
|
45 |
+
return last_result
|
46 |
+
|
47 |
+
result = fn(*args, **kwargs)
|
48 |
+
last_args, last_kwargs, last_result = args, kwargs, result
|
49 |
+
return result
|
50 |
+
|
51 |
+
return wrapper
|
52 |
+
|
53 |
+
|
54 |
+
def input_guard(
|
55 |
+
fn: Callable[..., torch.Tensor]
|
56 |
+
) -> Callable[..., torch.Tensor]:
|
57 |
+
"""
|
58 |
+
A decorator to make sure all input tensors are contiguous and set the device based on input tensors.
|
59 |
+
"""
|
60 |
+
|
61 |
+
@functools.wraps(fn)
|
62 |
+
def wrapper(*args, **kwargs):
|
63 |
+
contiguous_args = (i if not isinstance(i, torch.Tensor) else i.contiguous() for i in args)
|
64 |
+
contiguous_kwargs = {k: (v if not isinstance(v, torch.Tensor) else v.contiguous()) for k, v in kwargs.items()}
|
65 |
+
|
66 |
+
tensor = None
|
67 |
+
for arg in args:
|
68 |
+
if isinstance(arg, torch.Tensor):
|
69 |
+
tensor = arg
|
70 |
+
break
|
71 |
+
if tensor is None:
|
72 |
+
for value in kwargs.values():
|
73 |
+
if isinstance(value, torch.Tensor):
|
74 |
+
tensor = value
|
75 |
+
break
|
76 |
+
|
77 |
+
if tensor is not None:
|
78 |
+
ctx = custom_device_ctx(tensor.device.index)
|
79 |
+
else:
|
80 |
+
ctx = contextlib.nullcontext()
|
81 |
+
|
82 |
+
with ctx:
|
83 |
+
return fn(*contiguous_args, **contiguous_kwargs)
|
84 |
+
|
85 |
+
return wrapper
|
86 |
+
|
87 |
+
|
88 |
+
contiguous = input_guard
|
89 |
+
|
90 |
+
|
91 |
+
def require_version(version, hint):
|
92 |
+
"""
|
93 |
+
Perform a runtime check of the dependency versions, using the exact same syntax used by pip.
|
94 |
+
"""
|
95 |
+
def decorator(fn):
|
96 |
+
@functools.wraps(fn)
|
97 |
+
def wrapper(ctx, *args, **kwargs):
|
98 |
+
from transformers.utils.versions import require_version
|
99 |
+
require_version(version, hint)
|
100 |
+
return fn(ctx,
|
101 |
+
*(i if not isinstance(i, torch.Tensor) else i.contiguous() for i in args),
|
102 |
+
**{k: (v if not isinstance(v, torch.Tensor) else v.contiguous()) for k, v in kwargs.items()})
|
103 |
+
return wrapper
|
104 |
+
return decorator
|
105 |
+
|
106 |
+
|
107 |
+
def checkpoint(fn):
|
108 |
+
def wrapper(*args, **kwargs):
|
109 |
+
return torch.utils.checkpoint.checkpoint(fn, *args, **kwargs)
|
110 |
+
return wrapper
|
111 |
+
|
112 |
+
|
113 |
+
@lru_cache(maxsize=None)
|
114 |
+
def check_pytorch_version(version_s: str = '2.4') -> bool:
|
115 |
+
return version.parse(torch.__version__) >= version.parse(version_s)
|
116 |
+
|
117 |
+
|
118 |
+
def _cpu_device_warning():
|
119 |
+
import warnings
|
120 |
+
warnings.warn(('Triton is not supported on current platform, roll back to CPU.'), stacklevel=1)
|
121 |
+
|
122 |
+
|
123 |
+
@lru_cache(maxsize=None)
|
124 |
+
def get_multiprocessor_count(tensor_idx: int = 0) -> int:
|
125 |
+
try:
|
126 |
+
return triton.runtime.driver.active.utils.get_device_properties(tensor_idx)['multiprocessor_count']
|
127 |
+
except BaseException:
|
128 |
+
_cpu_device_warning()
|
129 |
+
return -1
|
130 |
+
|
131 |
+
|
132 |
+
@lru_cache(maxsize=None)
|
133 |
+
def get_available_device() -> str:
|
134 |
+
try:
|
135 |
+
return triton.runtime.driver.active.get_current_target().backend
|
136 |
+
except BaseException:
|
137 |
+
_cpu_device_warning()
|
138 |
+
return 'cpu'
|
139 |
+
|
140 |
+
|
141 |
+
@lru_cache(maxsize=None)
|
142 |
+
def _check_platform() -> Literal['nvidia', 'amd', 'intel', 'musa']:
|
143 |
+
device = get_available_device()
|
144 |
+
if device == 'cuda':
|
145 |
+
return 'nvidia'
|
146 |
+
elif device == 'hip':
|
147 |
+
return 'amd'
|
148 |
+
elif device == 'xpu':
|
149 |
+
return 'intel'
|
150 |
+
else:
|
151 |
+
return device
|
152 |
+
|
153 |
+
|
154 |
+
# For AMD GPUs, the triton backend is 'hip', while for Nvidia GPUs, the triton backend is 'cuda'.
|
155 |
+
# However, the torch backend is 'cuda' for both Nvidia and AMD GPUs.
|
156 |
+
# Therefore, we need to check the triton backend to determine the actual GPU vendor.
|
157 |
+
device = get_available_device() if get_available_device() != 'hip' else 'cuda'
|
158 |
+
device_torch_lib = getattr(torch, device)
|
159 |
+
device_platform = _check_platform()
|
160 |
+
|
161 |
+
is_amd = (device_platform == 'amd')
|
162 |
+
is_intel = (device_platform == 'intel')
|
163 |
+
is_nvidia = (device_platform == 'nvidia')
|
164 |
+
is_intel_alchemist = (is_intel and 'Intel(R) Arc(TM) A' in torch.xpu.get_device_name(0))
|
165 |
+
is_nvidia_hopper = (is_nvidia and ('NVIDIA H' in torch.cuda.get_device_name(0) or torch.cuda.get_device_capability()[0] >= 9))
|
166 |
+
use_cuda_graph = (is_nvidia and os.environ.get('FLA_USE_CUDA_GRAPH', '0') == '1')
|
167 |
+
|
168 |
+
# Nvidia Ampere or newer, haven't check AMD and intel yet.
|
169 |
+
is_tf32_supported = (is_nvidia and torch.cuda.get_device_capability(0)[0] >= 8)
|
170 |
+
is_gather_supported = hasattr(triton.language, 'gather')
|
171 |
+
|
172 |
+
|
173 |
+
def get_all_max_shared_mem():
|
174 |
+
try:
|
175 |
+
return [
|
176 |
+
triton.runtime.driver.active.utils.get_device_properties(i)['max_shared_mem']
|
177 |
+
for i in range(device_torch_lib.device_count())
|
178 |
+
]
|
179 |
+
except BaseException:
|
180 |
+
_cpu_device_warning()
|
181 |
+
return [-1]
|
182 |
+
|
183 |
+
|
184 |
+
class Backend(Enum):
|
185 |
+
ADA = 101376 # RTX 4090
|
186 |
+
AMPERE = 166912 # A100
|
187 |
+
HOPPER = 232448 # H100
|
188 |
+
DEFAULT = 102400 # Default
|
189 |
+
|
190 |
+
@classmethod
|
191 |
+
def get_shared_memory(cls, arch: str) -> int:
|
192 |
+
try:
|
193 |
+
return cls[arch.upper()].value
|
194 |
+
except KeyError:
|
195 |
+
return cls.DEFAULT.value
|
196 |
+
|
197 |
+
|
198 |
+
@lru_cache(maxsize=None)
|
199 |
+
def check_shared_mem(arch: str = "none", tensor_idx: int = 0) -> bool:
|
200 |
+
try:
|
201 |
+
device_shared_mem_list = get_all_max_shared_mem()
|
202 |
+
max_shared_memory = device_shared_mem_list[tensor_idx]
|
203 |
+
return max_shared_memory >= Backend.get_shared_memory(arch)
|
204 |
+
except Exception:
|
205 |
+
return False
|
206 |
+
|
207 |
+
|
208 |
+
if check_pytorch_version('2.4'):
|
209 |
+
device = 'cuda' if device == 'cpu' else device
|
210 |
+
autocast_custom_fwd = functools.partial(torch.amp.custom_fwd, device_type=device)
|
211 |
+
autocast_custom_bwd = functools.partial(torch.amp.custom_bwd, device_type=device)
|
212 |
+
|
213 |
+
def custom_device_ctx(index: int):
|
214 |
+
return device_torch_lib.device(index)
|
215 |
+
else:
|
216 |
+
assert device == 'cuda', 'Only cuda device is supported for PyTorch version < 2.4.0.'
|
217 |
+
autocast_custom_fwd = device_torch_lib.amp.custom_fwd
|
218 |
+
autocast_custom_bwd = device_torch_lib.amp.custom_bwd
|
219 |
+
|
220 |
+
def custom_device_ctx(index: int):
|
221 |
+
return torch.cuda.device(index)
|
flame/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.1.0"
|
flame/components/__init__.py
ADDED
File without changes
|
flame/components/checkpoint.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from dataclasses import dataclass, field
|
8 |
+
from datetime import timedelta
|
9 |
+
from io import BytesIO
|
10 |
+
from typing import Any, Dict, List
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch.distributed.checkpoint.stateful import Stateful
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class TrainState(Stateful):
|
18 |
+
step: int = 0
|
19 |
+
skipped_step: int = 0
|
20 |
+
token: int = 0
|
21 |
+
elapsed: timedelta = timedelta(0)
|
22 |
+
global_avg_losses: List[float] = field(default_factory=list)
|
23 |
+
global_max_losses: List[float] = field(default_factory=list)
|
24 |
+
log_steps: List[int] = field(default_factory=list)
|
25 |
+
|
26 |
+
def state_dict(self) -> Dict[str, Any]:
|
27 |
+
# Only checkpoint global_avg_losses and global_max_losses per log frequency
|
28 |
+
# to avoid sync overhead in every iteration.
|
29 |
+
global_avg_losses_bytes = BytesIO()
|
30 |
+
torch.save(self.global_avg_losses, global_avg_losses_bytes)
|
31 |
+
global_max_losses_bytes = BytesIO()
|
32 |
+
torch.save(self.global_max_losses, global_max_losses_bytes)
|
33 |
+
log_steps_bytes = BytesIO()
|
34 |
+
torch.save(self.log_steps, log_steps_bytes)
|
35 |
+
return {
|
36 |
+
"step": torch.tensor(self.step, dtype=torch.int32),
|
37 |
+
"skipped_step": torch.tensor(self.skipped_step, dtype=torch.int32),
|
38 |
+
"token": torch.tensor(self.token, dtype=torch.int64),
|
39 |
+
"elapsed": self.elapsed,
|
40 |
+
"global_avg_losses": global_avg_losses_bytes,
|
41 |
+
"global_max_losses": global_max_losses_bytes,
|
42 |
+
"log_steps": log_steps_bytes,
|
43 |
+
}
|
44 |
+
|
45 |
+
def load_state_dict(self, state_dict) -> None:
|
46 |
+
self.step = state_dict["step"].item()
|
47 |
+
self.skipped_step = state_dict.get("skipped_step", 0).item()
|
48 |
+
self.token = state_dict["token"].item()
|
49 |
+
self.elapsed = state_dict["elapsed"]
|
50 |
+
state_dict["global_avg_losses"].seek(0)
|
51 |
+
self.global_avg_losses = torch.load(
|
52 |
+
state_dict["global_avg_losses"], weights_only=False
|
53 |
+
)
|
54 |
+
state_dict["global_max_losses"].seek(0)
|
55 |
+
self.global_max_losses = torch.load(
|
56 |
+
state_dict["global_max_losses"], weights_only=False
|
57 |
+
)
|
58 |
+
state_dict["log_steps"].seek(0)
|
59 |
+
self.log_steps = torch.load(state_dict["log_steps"], weights_only=False)
|
flame/config_manager.py
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import sys
|
9 |
+
from collections import defaultdict
|
10 |
+
from typing import Tuple
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
try:
|
15 |
+
import tomllib
|
16 |
+
except ModuleNotFoundError:
|
17 |
+
import tomli as tomllib
|
18 |
+
|
19 |
+
from torchtitan.tools.logging import logger
|
20 |
+
|
21 |
+
TORCH_DTYPE_MAP = {
|
22 |
+
"float16": torch.float16,
|
23 |
+
"float32": torch.float32,
|
24 |
+
"bfloat16": torch.bfloat16,
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def string_list(raw_arg):
|
29 |
+
"""Comma-separated string list argument."""
|
30 |
+
return [s.strip() for s in raw_arg.split(",") if s.strip()]
|
31 |
+
|
32 |
+
|
33 |
+
def check_string_list_argument(args_dict: dict[str, any], fullargname: str):
|
34 |
+
section, name = fullargname.split(".")
|
35 |
+
# Split string list which are still raw strings.
|
36 |
+
if (
|
37 |
+
section in args_dict
|
38 |
+
and name in args_dict[section]
|
39 |
+
and isinstance(args_dict[section][name], str)
|
40 |
+
):
|
41 |
+
sec = args_dict[section]
|
42 |
+
sec[name] = string_list(sec[name])
|
43 |
+
|
44 |
+
|
45 |
+
class JobConfig:
|
46 |
+
"""
|
47 |
+
A helper class to manage the train configuration.
|
48 |
+
Semantics:
|
49 |
+
- Default config is loaded from a toml file. If no toml file is provided,
|
50 |
+
then the default config is loaded from argparse defaults.
|
51 |
+
- if toml file has missing keys, they are filled with argparse defaults.
|
52 |
+
- if additional explicit cmd args are provided in addition to the toml
|
53 |
+
file, they will override the toml config and the argparse defaults
|
54 |
+
|
55 |
+
precedence order: cmdline > toml > argparse default
|
56 |
+
|
57 |
+
Arg parsing semantics:
|
58 |
+
|
59 |
+
Each argument starts with <prefix>_ which is the section name in the toml file
|
60 |
+
followed by name of the option in the toml file. For ex,
|
61 |
+
model.name translates to:
|
62 |
+
[model]
|
63 |
+
name
|
64 |
+
in the toml file
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self):
|
68 |
+
self.args_dict = None
|
69 |
+
# main parser
|
70 |
+
self.parser = argparse.ArgumentParser(description="torchtitan arg parser.")
|
71 |
+
|
72 |
+
self.parser.add_argument(
|
73 |
+
"--job.config_file",
|
74 |
+
type=str,
|
75 |
+
default=None,
|
76 |
+
help="Job config file",
|
77 |
+
)
|
78 |
+
|
79 |
+
# job level configs
|
80 |
+
self.parser.add_argument(
|
81 |
+
"--job.dump_folder",
|
82 |
+
type=str,
|
83 |
+
default="./torchtitan/outputs",
|
84 |
+
help="Folder to dump job outputs",
|
85 |
+
)
|
86 |
+
self.parser.add_argument(
|
87 |
+
"--job.description",
|
88 |
+
type=str,
|
89 |
+
default="default job",
|
90 |
+
help="Description of the job",
|
91 |
+
)
|
92 |
+
self.parser.add_argument(
|
93 |
+
"--job.use_for_integration_test",
|
94 |
+
action="store_true",
|
95 |
+
help="Add this config to the integration test suite",
|
96 |
+
)
|
97 |
+
self.parser.add_argument(
|
98 |
+
"--job.print_args",
|
99 |
+
action="store_true",
|
100 |
+
help="Print the args to terminal",
|
101 |
+
)
|
102 |
+
|
103 |
+
# model configs
|
104 |
+
self.parser.add_argument(
|
105 |
+
"--model.name",
|
106 |
+
type=str,
|
107 |
+
default="fla",
|
108 |
+
help="Which model to train",
|
109 |
+
)
|
110 |
+
self.parser.add_argument(
|
111 |
+
"--model.config",
|
112 |
+
type=str,
|
113 |
+
default="fla-hub/transformer-1.3B-100B",
|
114 |
+
help="Path to the model config",
|
115 |
+
)
|
116 |
+
self.parser.add_argument(
|
117 |
+
"--model.tokenizer_path",
|
118 |
+
type=str,
|
119 |
+
default="fla-hub/transformer-1.3B-100B",
|
120 |
+
help="Tokenizer path",
|
121 |
+
)
|
122 |
+
self.parser.add_argument(
|
123 |
+
"--model.converters",
|
124 |
+
type=string_list,
|
125 |
+
nargs="+",
|
126 |
+
default=[],
|
127 |
+
help="""
|
128 |
+
Comma separated list of converters to apply to the model.
|
129 |
+
For instance, the `float8` converter swaps `torch.nn.Linear`
|
130 |
+
with `Float8Linear`. This feature requires you to install 'torchao'
|
131 |
+
which can be found here: https://github.com/pytorch/ao
|
132 |
+
""",
|
133 |
+
)
|
134 |
+
self.parser.add_argument(
|
135 |
+
"--model.print_after_conversion",
|
136 |
+
action="store_true",
|
137 |
+
help="""
|
138 |
+
If true, model definition will be printed to stdout after all model
|
139 |
+
converters have been applied.
|
140 |
+
""",
|
141 |
+
)
|
142 |
+
|
143 |
+
# profiling configs
|
144 |
+
self.parser.add_argument(
|
145 |
+
"--profiling.enable_profiling",
|
146 |
+
action="store_true",
|
147 |
+
help="Whether to enable pytorch profiler",
|
148 |
+
)
|
149 |
+
self.parser.add_argument(
|
150 |
+
"--profiling.save_traces_folder",
|
151 |
+
type=str,
|
152 |
+
default="profile_traces",
|
153 |
+
help="Trace files location",
|
154 |
+
)
|
155 |
+
self.parser.add_argument(
|
156 |
+
"--profiling.profile_freq",
|
157 |
+
type=int,
|
158 |
+
default=10,
|
159 |
+
help="How often to collect profiler traces, in iterations",
|
160 |
+
)
|
161 |
+
self.parser.add_argument(
|
162 |
+
"--profiling.enable_memory_snapshot",
|
163 |
+
action="store_true",
|
164 |
+
help="Whether to dump memory snapshot",
|
165 |
+
)
|
166 |
+
self.parser.add_argument(
|
167 |
+
"--profiling.save_memory_snapshot_folder",
|
168 |
+
type=str,
|
169 |
+
default="memory_snapshot",
|
170 |
+
help="Memeory snapshot files location",
|
171 |
+
)
|
172 |
+
|
173 |
+
# optimizer configs
|
174 |
+
self.parser.add_argument(
|
175 |
+
"--optimizer.name", type=str, default="AdamW", help="Optimizer to use"
|
176 |
+
)
|
177 |
+
self.parser.add_argument(
|
178 |
+
"--optimizer.eps",
|
179 |
+
type=float,
|
180 |
+
default=1e-8,
|
181 |
+
help="Epsilon value for the optimizer.",
|
182 |
+
)
|
183 |
+
self.parser.add_argument(
|
184 |
+
"--optimizer.lr", type=float, default=8e-4, help="Learning rate to use"
|
185 |
+
)
|
186 |
+
self.parser.add_argument(
|
187 |
+
"--optimizer.implementation",
|
188 |
+
type=str,
|
189 |
+
default="fused",
|
190 |
+
choices=["for-loop", "foreach", "fused"],
|
191 |
+
help="""
|
192 |
+
Specify which optimizer implementation to use:
|
193 |
+
- 'fused': Use fused implementation (CUDA only) for best performance.
|
194 |
+
- 'foreach': Use some horizontal fusion of tensors for better performance.
|
195 |
+
- 'for-loop': Use the default implementation for the optimizer (slowest).
|
196 |
+
- more info: https://pytorch.org/docs/stable/optim.html
|
197 |
+
""",
|
198 |
+
)
|
199 |
+
self.parser.add_argument(
|
200 |
+
"--optimizer.early_step_in_backward",
|
201 |
+
action="store_true",
|
202 |
+
help="""
|
203 |
+
Whether to apply optimizer in the backward. Caution, optimizer_in_backward
|
204 |
+
is not compatible with gradients clipping, users should not call
|
205 |
+
register_post_accumulate_grad_hook after the optimizer is built.""",
|
206 |
+
)
|
207 |
+
|
208 |
+
# lr scheduler configs
|
209 |
+
self.parser.add_argument(
|
210 |
+
"--lr_scheduler.warmup_steps",
|
211 |
+
type=int,
|
212 |
+
default=200,
|
213 |
+
help="Steps for lr scheduler warmup, normally 1/5 of --training.steps",
|
214 |
+
)
|
215 |
+
self.parser.add_argument(
|
216 |
+
"--lr_scheduler.decay_ratio",
|
217 |
+
type=float,
|
218 |
+
default=None,
|
219 |
+
help="""
|
220 |
+
Controls the proportion of the training steps allocated to the learning rate decay phase.
|
221 |
+
|
222 |
+
If `None`, the learning rate will begin decaying immediately after the warmup period.
|
223 |
+
Otherwise, the learning rate will remain stable after the warmup period and
|
224 |
+
only start decaying during the last `decay_ratio` portion of the total training steps.
|
225 |
+
|
226 |
+
This is known as the Warmup-Stable-Decay (WSD) schedule, as described in https://arxiv.org/abs/2404.06395.
|
227 |
+
""",
|
228 |
+
)
|
229 |
+
self.parser.add_argument(
|
230 |
+
"--lr_scheduler.decay_type",
|
231 |
+
type=str,
|
232 |
+
default="linear",
|
233 |
+
choices=["linear", "sqrt", "cosine"],
|
234 |
+
help="""
|
235 |
+
Learning rate decay type to use during training:
|
236 |
+
- 'linear': linearly decays learning rate from initial to final value
|
237 |
+
- 'sqrt': decays learning rate following a 1 minus square root curve
|
238 |
+
- 'cosine': smoothly decays learning rate following a cosine curve
|
239 |
+
""",
|
240 |
+
)
|
241 |
+
self.parser.add_argument(
|
242 |
+
"--lr_scheduler.lr_min",
|
243 |
+
type=float,
|
244 |
+
default=0.0,
|
245 |
+
help="""
|
246 |
+
Min lr ratio for lr scheduler.
|
247 |
+
|
248 |
+
If provided, the range of decay factor is scaled from 1 to `lr_min`
|
249 |
+
to ensure the learning rate does not drop below `optimizer.lr * lr_scheduler.lr_min`.
|
250 |
+
""",
|
251 |
+
)
|
252 |
+
|
253 |
+
# training configs
|
254 |
+
self.parser.add_argument(
|
255 |
+
"--training.batch_size", type=int, default=8, help="Batch size"
|
256 |
+
)
|
257 |
+
self.parser.add_argument(
|
258 |
+
"--training.seq_len", type=int, default=2048, help="Sequence length"
|
259 |
+
)
|
260 |
+
self.parser.add_argument(
|
261 |
+
"--training.context_len",
|
262 |
+
type=int,
|
263 |
+
default=2048,
|
264 |
+
help="Max length allowed for each sequence",
|
265 |
+
)
|
266 |
+
self.parser.add_argument(
|
267 |
+
"--training.varlen",
|
268 |
+
action="store_true",
|
269 |
+
help="Whether to take sequences of variable length as input",
|
270 |
+
)
|
271 |
+
self.parser.add_argument(
|
272 |
+
"--training.gradient_accumulation_steps",
|
273 |
+
type=int,
|
274 |
+
default=1,
|
275 |
+
help="Number of steps to accumulate gradients before updating parameters",
|
276 |
+
)
|
277 |
+
self.parser.add_argument(
|
278 |
+
"--training.steps",
|
279 |
+
type=int,
|
280 |
+
default=10000,
|
281 |
+
help="How many train steps to run",
|
282 |
+
)
|
283 |
+
self.parser.add_argument(
|
284 |
+
"--training.max_norm",
|
285 |
+
type=float,
|
286 |
+
default=1.0,
|
287 |
+
help="Max norm for gradient clipping",
|
288 |
+
)
|
289 |
+
self.parser.add_argument(
|
290 |
+
"--training.skip_nan_inf",
|
291 |
+
action="store_true",
|
292 |
+
help="Skip batch updates when NaN or INF gradients are encountered during training",
|
293 |
+
)
|
294 |
+
self.parser.add_argument(
|
295 |
+
"--training.dataset",
|
296 |
+
default="HuggingFaceFW/fineweb-edu",
|
297 |
+
help="Dataset to use, with comma separated values",
|
298 |
+
)
|
299 |
+
self.parser.add_argument(
|
300 |
+
"--training.dataset_name",
|
301 |
+
default=None,
|
302 |
+
help="The name of the dataset config, with comma separated values if provided",
|
303 |
+
)
|
304 |
+
self.parser.add_argument(
|
305 |
+
"--training.dataset_split",
|
306 |
+
default=None,
|
307 |
+
help="Dataset split to use, with comma separated values if provided",
|
308 |
+
)
|
309 |
+
self.parser.add_argument(
|
310 |
+
"--training.data_dir",
|
311 |
+
default=None,
|
312 |
+
help="Data dirs to use, with comma separated values if provided",
|
313 |
+
)
|
314 |
+
self.parser.add_argument(
|
315 |
+
"--training.data_files",
|
316 |
+
default=None,
|
317 |
+
help="Data files to use, with comma separated values if provided",
|
318 |
+
)
|
319 |
+
self.parser.add_argument(
|
320 |
+
"--training.data_probs",
|
321 |
+
default=None,
|
322 |
+
help="Data sampling probabilities, with comma separated values if provided",
|
323 |
+
)
|
324 |
+
self.parser.add_argument(
|
325 |
+
"--training.streaming",
|
326 |
+
action="store_true",
|
327 |
+
help="Whether to load dataset in streaming mode, used for huge dataset",
|
328 |
+
)
|
329 |
+
self.parser.add_argument(
|
330 |
+
"--training.num_workers",
|
331 |
+
type=int,
|
332 |
+
default=32,
|
333 |
+
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
|
334 |
+
)
|
335 |
+
self.parser.add_argument(
|
336 |
+
"--training.prefetch_factor",
|
337 |
+
type=int,
|
338 |
+
default=2,
|
339 |
+
help="Number of batches loaded in advance by each worker."
|
340 |
+
"2 means there will be a total of 2 * num_workers batches prefetched across all workers.",
|
341 |
+
)
|
342 |
+
self.parser.add_argument(
|
343 |
+
"--training.data_parallel_replicate_degree",
|
344 |
+
type=int,
|
345 |
+
default=1,
|
346 |
+
help="""
|
347 |
+
The `data_parallel_replicate_degree` argument specifies the degree of
|
348 |
+
data parallelism for weight replication. When this value is greater
|
349 |
+
than 1, weights will be replicated across `data_parallel_replicate_degree`
|
350 |
+
ranks. If `data_parallel_shard_degree` is also greater than 1, the parallelism
|
351 |
+
method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the
|
352 |
+
parallelism method used is DDP (Distributed Data Parallelism).
|
353 |
+
1 means disabled.""",
|
354 |
+
)
|
355 |
+
self.parser.add_argument(
|
356 |
+
"--training.data_parallel_shard_degree",
|
357 |
+
type=int,
|
358 |
+
default=-1,
|
359 |
+
help="""
|
360 |
+
The `data_parallel_shard_degree` argument specifies the degree of data
|
361 |
+
parallelism for weight sharding. When this value is greater than 1, weights
|
362 |
+
will be sharded across `data_parallel_shard_degree` ranks. If
|
363 |
+
`data_parallel_replicate_degree` is also greater than 1, the parallelism
|
364 |
+
method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the
|
365 |
+
parallelism method used is FSDP (Fully Sharded Data Parallelism).
|
366 |
+
|
367 |
+
-1 means leftover ranks will be used (After DP_REPLICATE/SP/PP). Note that
|
368 |
+
only `data_parallel_shard_degree` can be negative. 1 means disabled.""",
|
369 |
+
)
|
370 |
+
self.parser.add_argument(
|
371 |
+
"--training.enable_cpu_offload",
|
372 |
+
action="store_true",
|
373 |
+
help="""
|
374 |
+
Whether to apply CPU offloading of parameters, gradients, and optimizer states in FSDP""",
|
375 |
+
)
|
376 |
+
self.parser.add_argument(
|
377 |
+
"--training.tensor_parallel_degree",
|
378 |
+
type=int,
|
379 |
+
default=1,
|
380 |
+
help="Tensor Parallelism degree. 1 means disabled.",
|
381 |
+
)
|
382 |
+
self.parser.add_argument(
|
383 |
+
"--training.disable_loss_parallel",
|
384 |
+
action="store_true",
|
385 |
+
help="Whether to apply loss parallel when sequence parallel is enabled",
|
386 |
+
)
|
387 |
+
self.parser.add_argument(
|
388 |
+
"--training.fsdp_reshard_after_forward",
|
389 |
+
type=str,
|
390 |
+
default="default",
|
391 |
+
choices=["default", "always", "never"],
|
392 |
+
help="""
|
393 |
+
`reshard_after_forward` specifies the policy for applying `reshard_after_forward`
|
394 |
+
within an FSDP setup. `reshard_after_forward` controls parameter behavior after forward,
|
395 |
+
trading off memory and communication. See torch's `fully_shard` API for more documentation
|
396 |
+
on `reshard_after_forward`.
|
397 |
+
The supported policies include "default", "always" and "never":
|
398 |
+
- "default" applies default resharding behavior, implementing "smart defaults" for known optimal
|
399 |
+
scenarios.
|
400 |
+
- "always" will enable `reshard_after_forward` for all forward passes.
|
401 |
+
- "never" will disable `reshard_after_forward` for all forward passes.
|
402 |
+
""",
|
403 |
+
)
|
404 |
+
self.parser.add_argument(
|
405 |
+
"--training.mixed_precision_param",
|
406 |
+
type=str,
|
407 |
+
default="bfloat16",
|
408 |
+
choices=["bfloat16", "float32"],
|
409 |
+
help="""
|
410 |
+
torch dtype to use for parameters when applying mixed precision via FSDP.
|
411 |
+
This feature only takes effect when data_parallel_shard_degree > 1
|
412 |
+
""",
|
413 |
+
)
|
414 |
+
self.parser.add_argument(
|
415 |
+
"--training.mixed_precision_reduce",
|
416 |
+
type=str,
|
417 |
+
default="float32",
|
418 |
+
choices=["float32"],
|
419 |
+
help="""
|
420 |
+
torch dtype to use for reductions when applying mixed precision via FSDP.
|
421 |
+
This feature only takes effect when data_parallel_shard_degree > 1
|
422 |
+
""",
|
423 |
+
)
|
424 |
+
self.parser.add_argument(
|
425 |
+
"--training.compile",
|
426 |
+
action="store_true",
|
427 |
+
help="Whether to compile the model",
|
428 |
+
)
|
429 |
+
self.parser.add_argument(
|
430 |
+
"--training.gc_freq",
|
431 |
+
type=int,
|
432 |
+
default=50,
|
433 |
+
help="Python garbage control scheduling interval, in steps",
|
434 |
+
)
|
435 |
+
self.parser.add_argument(
|
436 |
+
"--training.seed",
|
437 |
+
type=int,
|
438 |
+
default=42,
|
439 |
+
help="Choose the base RNG seed used for training",
|
440 |
+
)
|
441 |
+
self.parser.add_argument(
|
442 |
+
"--training.deterministic",
|
443 |
+
action="store_true",
|
444 |
+
help="Use deterministic algorithms wherever possible, may be slower",
|
445 |
+
)
|
446 |
+
# metrics configs
|
447 |
+
self.parser.add_argument(
|
448 |
+
"--metrics.log_freq",
|
449 |
+
type=int,
|
450 |
+
default=10,
|
451 |
+
help="How often to log metrics to TensorBoard, in iterations",
|
452 |
+
)
|
453 |
+
self.parser.add_argument(
|
454 |
+
"--metrics.enable_tensorboard",
|
455 |
+
action="store_true",
|
456 |
+
help="Whether to log metrics to TensorBoard",
|
457 |
+
)
|
458 |
+
self.parser.add_argument(
|
459 |
+
"--metrics.disable_color_printing",
|
460 |
+
action="store_true",
|
461 |
+
help="Whether to disable color printing in logs",
|
462 |
+
)
|
463 |
+
self.parser.add_argument(
|
464 |
+
"--metrics.save_tb_folder",
|
465 |
+
type=str,
|
466 |
+
default="tb",
|
467 |
+
help="Folder to dump TensorBoard states",
|
468 |
+
)
|
469 |
+
self.parser.add_argument(
|
470 |
+
"--metrics.save_for_all_ranks",
|
471 |
+
action="store_true",
|
472 |
+
default=False,
|
473 |
+
help="""
|
474 |
+
Whether to save TensorBoard/Wandb metrics only for rank 0 or for all ranks.
|
475 |
+
When this option is False and pipeline_parallel_degree is > 1, the metrics
|
476 |
+
component uses the 0th rank of the last stage pipeline group, which is the
|
477 |
+
only stage that computes loss metrics.
|
478 |
+
""",
|
479 |
+
)
|
480 |
+
self.parser.add_argument(
|
481 |
+
"--metrics.enable_wandb",
|
482 |
+
action="store_true",
|
483 |
+
help="Whether to log metrics to Weights & Biases",
|
484 |
+
)
|
485 |
+
|
486 |
+
self.parser.add_argument(
|
487 |
+
"--experimental.enable_async_tensor_parallel",
|
488 |
+
action="store_true",
|
489 |
+
help="Whether to apply async tensor parallel (currently only effective when compile is enabled)",
|
490 |
+
)
|
491 |
+
self.parser.add_argument(
|
492 |
+
"--experimental.pipeline_parallel_degree",
|
493 |
+
type=int,
|
494 |
+
default=1,
|
495 |
+
help="""
|
496 |
+
Pipeline Parallelism degree, or number of ranks. 1 means disabled.
|
497 |
+
If using looped schedules, this still specifies the number of physical ranks, not the number
|
498 |
+
of stages. Stages per rank are inferred from split points degree, and schedule.""",
|
499 |
+
)
|
500 |
+
self.parser.add_argument(
|
501 |
+
"--experimental.pipeline_parallel_split_points",
|
502 |
+
type=string_list,
|
503 |
+
nargs="+",
|
504 |
+
default=[],
|
505 |
+
help="""
|
506 |
+
Specify comma-separated names of modules to use as the beginning of a split point.
|
507 |
+
|
508 |
+
e.g. "layers.0,layers.2" will cause the model to be split into 3 stages,
|
509 |
+
the first containing all the layers up to layers.0,
|
510 |
+
the second containing layers.0 and up to layers.2,
|
511 |
+
the third containing layers.2 and all the remaining layers.
|
512 |
+
|
513 |
+
Note: fully-automated splitting may be enabled in the future,
|
514 |
+
but currently the split points must be specified manually.""",
|
515 |
+
)
|
516 |
+
self.parser.add_argument(
|
517 |
+
"--experimental.pipeline_parallel_schedule",
|
518 |
+
type=str,
|
519 |
+
default="1F1B",
|
520 |
+
help="""
|
521 |
+
Specify the Pipeline Parallel schedule to use. The supported schedules are:
|
522 |
+
https://github.com/pytorch/pytorch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/torch/distributed/pipelining/schedules.py#L2161.
|
523 |
+
The schedule must be compatible with the split points and stages_per_rank.
|
524 |
+
|
525 |
+
Looped schedules (e.g. Interleaved1F1B) require specifying pipeline_parallel_degree = number of ranks,
|
526 |
+
and split_points = number of stages - 1
|
527 |
+
""",
|
528 |
+
)
|
529 |
+
self.parser.add_argument(
|
530 |
+
"--experimental.pipeline_parallel_schedule_csv",
|
531 |
+
type=str,
|
532 |
+
default="",
|
533 |
+
help="""
|
534 |
+
Specify the path to the pipeline parallel schedule csv file to use.
|
535 |
+
The pipeline_parallel_schedule argument must be either
|
536 |
+
PipelineScheduleSingle, PipelineScheduleMulti, or _PipelineScheduleRuntime.
|
537 |
+
""",
|
538 |
+
)
|
539 |
+
|
540 |
+
self.parser.add_argument(
|
541 |
+
"--experimental.pipeline_parallel_microbatches",
|
542 |
+
type=int,
|
543 |
+
default=None,
|
544 |
+
help="""
|
545 |
+
How many microbatches to split the global training batch into when using pipeline parallelism.
|
546 |
+
|
547 |
+
The global training batch size must be evenly divisible by the number of microbatches.
|
548 |
+
|
549 |
+
The default value will be the number of pipeline stages, if unspecified.
|
550 |
+
""",
|
551 |
+
)
|
552 |
+
self.parser.add_argument(
|
553 |
+
"--experimental.enable_compiled_autograd",
|
554 |
+
action="store_true",
|
555 |
+
help="Enable CompiledAutograd to compile the backward.",
|
556 |
+
)
|
557 |
+
self.parser.add_argument(
|
558 |
+
"--experimental.context_parallel_degree",
|
559 |
+
type=int,
|
560 |
+
default=1,
|
561 |
+
help="Context parallelism degree. 1 means disabled.",
|
562 |
+
)
|
563 |
+
self.parser.add_argument(
|
564 |
+
"--experimental.context_parallel_rotate_method",
|
565 |
+
type=str,
|
566 |
+
default="allgather",
|
567 |
+
help="""
|
568 |
+
The collective to use in context parallel SDPA for kv shards exchange.
|
569 |
+
|
570 |
+
'allgather' means to all-gather all kv shards on ranks after the first sub-SDPA computation,
|
571 |
+
|
572 |
+
'alltoall' means to all-to-all shuffle the kv shards.
|
573 |
+
|
574 |
+
The default value is 'allgather'.
|
575 |
+
""",
|
576 |
+
)
|
577 |
+
# I'm not particularly fond of this. Users can choose to write their own wrapper
|
578 |
+
# module and import TorchTitan training loop and execute it, which look cleaner.
|
579 |
+
# One reason to provide this option is to allow users to use the existing run script.
|
580 |
+
# While the script is pretty trivial now, we may add more logic when integrating
|
581 |
+
# with TorchFT.
|
582 |
+
# This option is subject to change and may be deleted in the future.
|
583 |
+
self.parser.add_argument(
|
584 |
+
"--experimental.custom_model_path",
|
585 |
+
type=str,
|
586 |
+
default="",
|
587 |
+
help="""
|
588 |
+
The --custom_model_path option allows to specify a custom path to a model module
|
589 |
+
that is not natively implemented within TorchTitan.
|
590 |
+
Acceptable values are the file system path to the module (e.g., my_models/model_x)
|
591 |
+
dotted import module (e.g., some_package.model_x).
|
592 |
+
""",
|
593 |
+
)
|
594 |
+
# checkpointing configs
|
595 |
+
self.parser.add_argument(
|
596 |
+
"--checkpoint.enable_checkpoint",
|
597 |
+
action="store_true",
|
598 |
+
help="Whether to enable checkpoint",
|
599 |
+
)
|
600 |
+
self.parser.add_argument(
|
601 |
+
"--checkpoint.folder",
|
602 |
+
type=str,
|
603 |
+
default="checkpoint",
|
604 |
+
help="""
|
605 |
+
The folder to store the checkpoints.
|
606 |
+
When enable_checkpoint is set to true, checkpoints will be in {--job.dump_folder}/{--checkpoint.folder}.
|
607 |
+
""",
|
608 |
+
)
|
609 |
+
self.parser.add_argument(
|
610 |
+
"--checkpoint.interval",
|
611 |
+
type=int,
|
612 |
+
default=500,
|
613 |
+
help="Checkpointing interval in steps.",
|
614 |
+
)
|
615 |
+
self.parser.add_argument(
|
616 |
+
"--checkpoint.model_weights_only",
|
617 |
+
action="store_true",
|
618 |
+
help="""
|
619 |
+
When model_weights_only=True, only model weights will be saved at the end of training.
|
620 |
+
With this, checkpoints can be loaded using `torch.load(..., weights_only=True)` after conversion.
|
621 |
+
When model_weights_only=False, the full checkpoint will be saved.
|
622 |
+
A full checkpoint includes model, optimizer and train_state, which can be used to resume training.
|
623 |
+
The default value is false.
|
624 |
+
""",
|
625 |
+
)
|
626 |
+
self.parser.add_argument(
|
627 |
+
"--checkpoint.export_dtype",
|
628 |
+
type=str,
|
629 |
+
default="float32",
|
630 |
+
choices=["float16", "bfloat16", "float32"],
|
631 |
+
help="""
|
632 |
+
Converts to the specified precision when training completes and model_weights_only=true.
|
633 |
+
Currently supports float32, float16, and bfloat16.
|
634 |
+
The default value is float32.
|
635 |
+
""",
|
636 |
+
)
|
637 |
+
self.parser.add_argument(
|
638 |
+
"--checkpoint.create_seed_checkpoint",
|
639 |
+
action="store_true",
|
640 |
+
help="""
|
641 |
+
Initializes the full model without applying parallelisms, and then saves it as a seed checkpoint.
|
642 |
+
Note: requires user to call train.py without specifying any parallelisms, e.g. NGPU=1.
|
643 |
+
Could be implemented as a separate script, but this way shares more code.
|
644 |
+
""",
|
645 |
+
)
|
646 |
+
self.parser.add_argument(
|
647 |
+
"--checkpoint.async_mode",
|
648 |
+
type=str,
|
649 |
+
default="disabled",
|
650 |
+
help="""
|
651 |
+
Which async checkpoint mode to use. Currently there are 3 different modes.
|
652 |
+
1. "disabled": synchronized checkpointing will be used.
|
653 |
+
2. "async": torch.distributed.checkpoint.async_save will be used.
|
654 |
+
3. "async_with_pinned_mem": this option utilizes a dedicated pinned memory
|
655 |
+
space and creates a separate process for faster GPU->CPU transfer
|
656 |
+
performance and eliminating GIL contention. The cost is increased CPU
|
657 |
+
memory usage. If insufficient CPU memory is available, performance may
|
658 |
+
degrade due to memory paging. For most users, "async" should suffice as
|
659 |
+
the performance overhead is typically small (on the order of tens of
|
660 |
+
seconds) compared to checkpointing frequency. This mode can be employed
|
661 |
+
to pursue near-zero checkpointing times (e.g., < 1 second) given
|
662 |
+
appropriate hardware support such as ample CPU memory and fast PCIe.
|
663 |
+
|
664 |
+
"disabled" is the default mode.
|
665 |
+
""",
|
666 |
+
)
|
667 |
+
self.parser.add_argument(
|
668 |
+
"--checkpoint.keep_latest_k",
|
669 |
+
type=int,
|
670 |
+
default=0,
|
671 |
+
help="""
|
672 |
+
Keeps only the latest k checkpoints, and purging older ones. If 0, keep all checkpoints.
|
673 |
+
0 is the default value. k cannot be 1 as the last one may be in the process of being
|
674 |
+
saved. As a result, the metadata of the last one may not be ready yet.
|
675 |
+
""",
|
676 |
+
)
|
677 |
+
self.parser.add_argument(
|
678 |
+
"--checkpoint.load_step",
|
679 |
+
type=int,
|
680 |
+
default=-1,
|
681 |
+
help="Load the checkpoint at the specified step. If -1, load the latest checkpoint.",
|
682 |
+
)
|
683 |
+
self.parser.add_argument(
|
684 |
+
"--checkpoint.exclude_from_loading",
|
685 |
+
type=string_list,
|
686 |
+
nargs="*",
|
687 |
+
default=[],
|
688 |
+
help="""
|
689 |
+
Exclude specific keys from being loaded from the checkpoint.
|
690 |
+
Provide a comma-separated list of keys to exclude, e.g. 'optimizer,lr_scheduler,dataloader'.
|
691 |
+
This will load the model only, excluding the specified keys.
|
692 |
+
""",
|
693 |
+
)
|
694 |
+
self.parser.add_argument(
|
695 |
+
"--checkpoint.convert_to_hf_on_save",
|
696 |
+
action="store_true",
|
697 |
+
help="""
|
698 |
+
If true, automatically convert the saved DCP checkpoint to Hugging Face format
|
699 |
+
in a parallel directory (e.g., step-1000-hf) after each save.
|
700 |
+
""",
|
701 |
+
)
|
702 |
+
self.parser.add_argument(
|
703 |
+
"--checkpoint.hf_upload_enabled",
|
704 |
+
action="store_true",
|
705 |
+
help="Enable uploading converted Hugging Face checkpoints to the Hub.",
|
706 |
+
)
|
707 |
+
self.parser.add_argument(
|
708 |
+
"--checkpoint.hf_repo_base_name",
|
709 |
+
type=str,
|
710 |
+
default=None,
|
711 |
+
help="Hugging Face Hub repository ID to upload checkpoints to (e.g., 'username/repo').",
|
712 |
+
)
|
713 |
+
self.parser.add_argument(
|
714 |
+
"--checkpoint.hf_upload_format",
|
715 |
+
type=str,
|
716 |
+
default="dcp",
|
717 |
+
choices=["dcp", "hf"],
|
718 |
+
help="""
|
719 |
+
Format to upload to Hugging Face Hub. 'dcp' for DCP format, 'hf' for Hugging Face format.
|
720 |
+
Note: 'hf' is only supported for models with a single pipeline stage.
|
721 |
+
""",
|
722 |
+
)
|
723 |
+
# activation checkpointing configs
|
724 |
+
self.parser.add_argument(
|
725 |
+
"--activation_checkpoint.mode",
|
726 |
+
type=str,
|
727 |
+
default="selective",
|
728 |
+
help="Type of activation checkpointing to use ['none', 'full', 'selective']",
|
729 |
+
)
|
730 |
+
self.parser.add_argument(
|
731 |
+
"--activation_checkpoint.selective_ac_option",
|
732 |
+
type=str,
|
733 |
+
default="2", # 2 = checkpoint every other layer
|
734 |
+
help="""
|
735 |
+
Selective activation checkpointing options ['int', 'op'].
|
736 |
+
'int' (e.g., 2) for every nth layer, or 'op' for op level ac.
|
737 |
+
""",
|
738 |
+
)
|
739 |
+
|
740 |
+
self.parser.add_argument(
|
741 |
+
"--activation_offload.mode",
|
742 |
+
type=str,
|
743 |
+
default="none",
|
744 |
+
help="""
|
745 |
+
if we are using activation offload or not. Options are ['none', 'full'].
|
746 |
+
""",
|
747 |
+
)
|
748 |
+
|
749 |
+
# float8 configs
|
750 |
+
self.parser.add_argument(
|
751 |
+
"--float8.enable_fsdp_float8_all_gather",
|
752 |
+
action="store_true",
|
753 |
+
help="Whether enable float8 all-gather in FSDP, recommended for tensorwise scaling",
|
754 |
+
)
|
755 |
+
self.parser.add_argument(
|
756 |
+
"--float8.precompute_float8_dynamic_scale_for_fsdp",
|
757 |
+
action="store_true",
|
758 |
+
help="Whether precompute float8 scales dynamically for FSDP, recommended for tensorwise scaling",
|
759 |
+
)
|
760 |
+
self.parser.add_argument(
|
761 |
+
"--float8.force_recompute_fp8_weight_in_bwd",
|
762 |
+
action="store_true",
|
763 |
+
help="""
|
764 |
+
Whether to force the recomputation of FP8 weights during backward pass.
|
765 |
+
When using FSDP with tensorwise scaling, it is recommended to enable
|
766 |
+
`force_recompute_fp8_weight_in_bwd` to prevent saving unsharded FP8 weights
|
767 |
+
for backward computation.
|
768 |
+
""",
|
769 |
+
)
|
770 |
+
self.parser.add_argument(
|
771 |
+
"--float8.recipe_name",
|
772 |
+
type=str,
|
773 |
+
default=None,
|
774 |
+
choices=["tensorwise", "rowwise", "rowwise_with_gw_hp"],
|
775 |
+
help="""
|
776 |
+
If specified, creates float8 config from recipe name, valid choices are
|
777 |
+
`tensorwise`, `rowwise` and `rowwise_with_gw_hp`.
|
778 |
+
""",
|
779 |
+
)
|
780 |
+
|
781 |
+
# communications library settings
|
782 |
+
self.parser.add_argument(
|
783 |
+
"--comm.init_timeout_seconds",
|
784 |
+
type=int,
|
785 |
+
default=300,
|
786 |
+
help="Timeout for communication operations, during initialization and first train step.",
|
787 |
+
)
|
788 |
+
self.parser.add_argument(
|
789 |
+
"--comm.train_timeout_seconds",
|
790 |
+
type=int,
|
791 |
+
default=100,
|
792 |
+
help=(
|
793 |
+
"Timeout for communication operations after the first train step -- "
|
794 |
+
"usually a tighter bound than during initialization."
|
795 |
+
),
|
796 |
+
)
|
797 |
+
self.parser.add_argument(
|
798 |
+
"--comm.trace_buf_size",
|
799 |
+
type=int,
|
800 |
+
default=20000,
|
801 |
+
help="Flight recorder ring buffer size, >0 means recording by default, 0 means disabled",
|
802 |
+
)
|
803 |
+
|
804 |
+
# memory estimation settings
|
805 |
+
self.parser.add_argument(
|
806 |
+
"--memory_estimation.enabled",
|
807 |
+
help="Whether to estimate memory usage for FSDP",
|
808 |
+
action="store_true",
|
809 |
+
)
|
810 |
+
|
811 |
+
self.parser.add_argument(
|
812 |
+
"--memory_estimation.disable_fake_mode",
|
813 |
+
help="Whether to estimate memory under FakeTensorMode",
|
814 |
+
action="store_true",
|
815 |
+
)
|
816 |
+
|
817 |
+
self.parser.add_argument(
|
818 |
+
"--fault_tolerance.enable",
|
819 |
+
action="store_true",
|
820 |
+
help="""
|
821 |
+
Enable TorchFT integration. When TorchFT is enabled, HSDP will be used.
|
822 |
+
And --fault_tolerance.data_parallel_replicate_degree should be 1 and
|
823 |
+
--fault_tolerance.group_size will be used to control the maximum
|
824 |
+
replicate group size as the replicate group size is dynamic.
|
825 |
+
|
826 |
+
Note that this is still an experimental feature.
|
827 |
+
""",
|
828 |
+
)
|
829 |
+
|
830 |
+
self.parser.add_argument(
|
831 |
+
"--fault_tolerance.replica_id",
|
832 |
+
type=int,
|
833 |
+
default=0,
|
834 |
+
help="The TorchFT replica ID of this run.",
|
835 |
+
)
|
836 |
+
|
837 |
+
self.parser.add_argument(
|
838 |
+
"--fault_tolerance.group_size",
|
839 |
+
type=int,
|
840 |
+
default=0,
|
841 |
+
help="""
|
842 |
+
The number of TorchFT replicate groups. This number will be used for
|
843 |
+
dataloader to split the dataset across the replicate groups and FSDP
|
844 |
+
dimension
|
845 |
+
""",
|
846 |
+
)
|
847 |
+
|
848 |
+
self.parser.add_argument(
|
849 |
+
"--fault_tolerance.min_replica_size",
|
850 |
+
type=int,
|
851 |
+
default=1,
|
852 |
+
help="The minimum number of FT replica for each step.",
|
853 |
+
)
|
854 |
+
|
855 |
+
def to_dict(self):
|
856 |
+
return self.args_dict
|
857 |
+
|
858 |
+
def parse_args(self, args_list: list = sys.argv[1:]):
|
859 |
+
args, cmd_args = self.parse_args_from_command_line(args_list)
|
860 |
+
config_file = getattr(args, "job.config_file", None)
|
861 |
+
# build up a two level dict
|
862 |
+
args_dict = self._args_to_two_level_dict(args)
|
863 |
+
if config_file is not None:
|
864 |
+
try:
|
865 |
+
with open(config_file, "rb") as f:
|
866 |
+
for k, v in tomllib.load(f).items():
|
867 |
+
# to prevent overwrite of non-specified keys
|
868 |
+
args_dict[k] |= v
|
869 |
+
except (FileNotFoundError, tomllib.TOMLDecodeError) as e:
|
870 |
+
logger.exception(
|
871 |
+
f"Error while loading the configuration file: {config_file}"
|
872 |
+
)
|
873 |
+
logger.exception(f"Error details: {str(e)}")
|
874 |
+
raise e
|
875 |
+
|
876 |
+
# Checking string-list arguments are properly split into a list
|
877 |
+
# if split-points came from 'args' (from cmd line) it would have already been parsed into a list by that parser
|
878 |
+
string_list_argnames = self._get_string_list_argument_names()
|
879 |
+
for n in string_list_argnames:
|
880 |
+
check_string_list_argument(args_dict, n)
|
881 |
+
|
882 |
+
# override args dict with cmd_args
|
883 |
+
cmd_args_dict = self._args_to_two_level_dict(cmd_args)
|
884 |
+
for section, section_args in cmd_args_dict.items():
|
885 |
+
for k, v in section_args.items():
|
886 |
+
args_dict[section][k] = v
|
887 |
+
|
888 |
+
self.args_dict = args_dict
|
889 |
+
|
890 |
+
for k, v in args_dict.items():
|
891 |
+
class_type = type(k.title(), (), v)
|
892 |
+
setattr(self, k, class_type())
|
893 |
+
self._validate_config()
|
894 |
+
|
895 |
+
def _args_to_two_level_dict(self, args: argparse.Namespace) -> defaultdict:
|
896 |
+
args_dict = defaultdict(defaultdict)
|
897 |
+
for k, v in vars(args).items():
|
898 |
+
first_level_key, second_level_key = k.split(".", 1)
|
899 |
+
args_dict[first_level_key][second_level_key] = v
|
900 |
+
return args_dict
|
901 |
+
|
902 |
+
def _validate_config(self) -> None:
|
903 |
+
# TODO: Add more mandatory validations
|
904 |
+
assert self.model.config
|
905 |
+
assert self.model.tokenizer_path
|
906 |
+
|
907 |
+
def _get_string_list_argument_names(self) -> list[str]:
|
908 |
+
"""Get the parser argument names of type `string_list`."""
|
909 |
+
string_list_args = [
|
910 |
+
v.dest for v in self.parser._actions if v.type is string_list
|
911 |
+
]
|
912 |
+
return string_list_args
|
913 |
+
|
914 |
+
def parse_args_from_command_line(
|
915 |
+
self, args_list
|
916 |
+
) -> Tuple[argparse.Namespace, argparse.Namespace]:
|
917 |
+
"""
|
918 |
+
Parse command line arguments and return the parsed args and the command line only args
|
919 |
+
"""
|
920 |
+
args = self.parser.parse_args(args_list)
|
921 |
+
string_list_argnames = set(self._get_string_list_argument_names())
|
922 |
+
|
923 |
+
# aux parser to parse the command line only args, with no defaults from main parser
|
924 |
+
aux_parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
|
925 |
+
for arg, val in vars(args).items():
|
926 |
+
if isinstance(val, bool):
|
927 |
+
aux_parser.add_argument(
|
928 |
+
"--" + arg, action="store_true" if val else "store_false"
|
929 |
+
)
|
930 |
+
elif arg in string_list_argnames:
|
931 |
+
# without this special case, type inference breaks here,
|
932 |
+
# since the inferred type is just 'list' and it ends up flattening
|
933 |
+
# e.g. from ["layers.0", "layers.1"] into ["l", "a", "y", "e", "r", "s", ".0", ...]
|
934 |
+
aux_parser.add_argument("--" + arg, type=string_list)
|
935 |
+
else:
|
936 |
+
aux_parser.add_argument("--" + arg, type=type(val))
|
937 |
+
|
938 |
+
cmd_args, _ = aux_parser.parse_known_args(args_list)
|
939 |
+
|
940 |
+
return args, cmd_args
|
flame/data.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import copy
|
6 |
+
import pickle
|
7 |
+
from copy import deepcopy
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
10 |
+
|
11 |
+
import datasets
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from datasets import Dataset, IterableDataset
|
15 |
+
from datasets.iterable_dataset import ShufflingConfig
|
16 |
+
from torch.distributed.checkpoint.stateful import Stateful
|
17 |
+
from torchdata.stateful_dataloader import StatefulDataLoader
|
18 |
+
from transformers import PreTrainedTokenizer
|
19 |
+
|
20 |
+
from torchtitan.tools.logging import logger
|
21 |
+
|
22 |
+
|
23 |
+
class BufferShuffledIterableDataset(IterableDataset):
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
dataset: Dataset,
|
27 |
+
tokenizer: PreTrainedTokenizer,
|
28 |
+
seq_len: int = 2048,
|
29 |
+
rank: int = 0,
|
30 |
+
world_size: int = 1,
|
31 |
+
buffer_size: int = 1024,
|
32 |
+
) -> BufferShuffledIterableDataset:
|
33 |
+
self.dataset = dataset
|
34 |
+
self.tokenizer = tokenizer
|
35 |
+
|
36 |
+
self.data = dataset.shard(world_size, rank)
|
37 |
+
self.seq_len = seq_len
|
38 |
+
|
39 |
+
self.rank = rank
|
40 |
+
self.world_size = world_size
|
41 |
+
self.buffer_size = buffer_size
|
42 |
+
|
43 |
+
if tokenizer.vocab_size < torch.iinfo(torch.int16).max:
|
44 |
+
self.dtype = torch.int16
|
45 |
+
elif tokenizer.vocab_size < torch.iinfo(torch.int32).max:
|
46 |
+
self.dtype = torch.int32
|
47 |
+
else:
|
48 |
+
self.dtype = torch.int64
|
49 |
+
self.states = None
|
50 |
+
self.buffer = torch.tensor([], dtype=self.dtype)
|
51 |
+
self.tokens = []
|
52 |
+
self.rand_id = 0
|
53 |
+
self.token_id = 0
|
54 |
+
self.rng_state = None
|
55 |
+
self._epoch = 0
|
56 |
+
|
57 |
+
def __iter__(self):
|
58 |
+
g = torch.Generator()
|
59 |
+
g.manual_seed(self._epoch + self.rank)
|
60 |
+
if self.rng_state is not None:
|
61 |
+
g.set_state(self.rng_state)
|
62 |
+
|
63 |
+
rand_it = self.randint(0, self.buffer_size, g=g)
|
64 |
+
if self.states is not None:
|
65 |
+
self.data.load_state_dict(self.states)
|
66 |
+
|
67 |
+
# max number of tokens allowed in the chunk buffer
|
68 |
+
n_tokens = self.buffer_size * self.seq_len
|
69 |
+
|
70 |
+
while True:
|
71 |
+
for sample in self.tokenize(self.data):
|
72 |
+
# keep appending the samples to the token buffer
|
73 |
+
self.tokens += sample
|
74 |
+
# if the token buffer is full, start sampling
|
75 |
+
# NOTE: we first convert the token ids to a tensor of shape [n_chunks, seq_len] for efficiency
|
76 |
+
if len(self.buffer) == 0 and len(self.tokens) >= n_tokens:
|
77 |
+
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=self.dtype).view(self.buffer_size, -1)
|
78 |
+
self.tokens = self.tokens[n_tokens:]
|
79 |
+
if len(self.buffer) == self.buffer_size:
|
80 |
+
yield from self.sample(rand_it)
|
81 |
+
|
82 |
+
n_chunks = len(self.tokens) // self.seq_len
|
83 |
+
# handle the left tokens in the buffer
|
84 |
+
if n_chunks > 0:
|
85 |
+
n_tokens = n_chunks * self.seq_len
|
86 |
+
indices = torch.randperm(n_chunks, generator=g).tolist()
|
87 |
+
self.buffer = torch.tensor(self.tokens[:n_tokens], dtype=torch.long).view(n_chunks, -1)
|
88 |
+
self.tokens = self.tokens[n_tokens:]
|
89 |
+
for i in indices:
|
90 |
+
yield {'input_ids': self.buffer[i]}
|
91 |
+
|
92 |
+
def tokenize(self, data, batch_size: int = 64):
|
93 |
+
texts, states = [], []
|
94 |
+
for sample in data:
|
95 |
+
texts.append(sample['text'])
|
96 |
+
states.append(self.data.state_dict())
|
97 |
+
if len(texts) == batch_size:
|
98 |
+
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
|
99 |
+
self.states = s
|
100 |
+
yield tokenized
|
101 |
+
texts, states = [], []
|
102 |
+
if len(texts) > 0:
|
103 |
+
for s, tokenized in zip(states, self.tokenizer(texts, return_attention_mask=False)['input_ids']):
|
104 |
+
self.states = s
|
105 |
+
yield tokenized
|
106 |
+
|
107 |
+
def sample(self, indices):
|
108 |
+
n_tokens = (len(self.tokens) // self.seq_len) * self.seq_len
|
109 |
+
while self.token_id < n_tokens:
|
110 |
+
i = next(indices)
|
111 |
+
start, end = self.token_id, self.token_id + self.seq_len
|
112 |
+
self.token_id += self.seq_len
|
113 |
+
yield {'input_ids': self.buffer[i].to(torch.long)}
|
114 |
+
self.buffer[i] = torch.tensor(self.tokens[start:end], dtype=self.dtype)
|
115 |
+
self.token_id = 0
|
116 |
+
self.tokens = self.tokens[n_tokens:]
|
117 |
+
|
118 |
+
def randint(self, low: int, high: int, buffer_size: int = 1024, g: torch.Generator = torch.Generator()) -> Iterable[int]:
|
119 |
+
indices = torch.empty(buffer_size, dtype=torch.long)
|
120 |
+
while True:
|
121 |
+
# record the generator states before sampling
|
122 |
+
self.rng_state = g.get_state()
|
123 |
+
indices = torch.randint(low, high, (buffer_size,), out=indices, generator=g)
|
124 |
+
for i in indices[self.rand_id:].tolist():
|
125 |
+
self.rand_id += 1
|
126 |
+
yield i
|
127 |
+
self.rand_id = 0
|
128 |
+
|
129 |
+
def set_epoch(self, epoch):
|
130 |
+
self._epoch = epoch
|
131 |
+
if hasattr(self.dataset, 'set_epoch'):
|
132 |
+
self.dataset.set_epoch(epoch)
|
133 |
+
|
134 |
+
def state_dict(self):
|
135 |
+
return {
|
136 |
+
'states': self.states,
|
137 |
+
'buffer': self.buffer.clone(),
|
138 |
+
'tokens': deepcopy(self.tokens),
|
139 |
+
'rand_id': self.rand_id,
|
140 |
+
'token_id': self.token_id,
|
141 |
+
'rng_state': self.rng_state,
|
142 |
+
'epoch': self._epoch,
|
143 |
+
}
|
144 |
+
|
145 |
+
def load_state_dict(self, state_dict):
|
146 |
+
self.states = state_dict['states']
|
147 |
+
self.buffer = state_dict['buffer'].clone()
|
148 |
+
self.tokens = deepcopy(state_dict['tokens'])
|
149 |
+
self.rand_id = state_dict['rand_id']
|
150 |
+
self.token_id = state_dict['token_id']
|
151 |
+
self.rng_state = state_dict['rng_state'].clone() if state_dict['rng_state'] is not None else None
|
152 |
+
self._epoch = state_dict['epoch']
|
153 |
+
|
154 |
+
|
155 |
+
class OnlineTokenizedIterableDataset(IterableDataset):
|
156 |
+
def __init__(
|
157 |
+
self, dataset: Dataset, tokenizer: PreTrainedTokenizer, seq_len: int = 2048, rank: int = 0, world_size: int = 1
|
158 |
+
) -> OnlineTokenizedIterableDataset:
|
159 |
+
self.dataset = dataset
|
160 |
+
self.tokenizer = tokenizer
|
161 |
+
|
162 |
+
self.data = dataset.shard(world_size, rank)
|
163 |
+
self.seq_len = seq_len
|
164 |
+
self.rank = rank
|
165 |
+
self.world_size = world_size
|
166 |
+
|
167 |
+
self.states = None
|
168 |
+
self.tokens = []
|
169 |
+
|
170 |
+
def __iter__(self):
|
171 |
+
if self.states is not None:
|
172 |
+
self.data.load_state_dict(self.states)
|
173 |
+
|
174 |
+
while True:
|
175 |
+
for sample in self.tokenize(self.data):
|
176 |
+
# keep appending the samples to the token buffer
|
177 |
+
self.tokens += sample
|
178 |
+
|
179 |
+
while len(self.tokens) >= self.seq_len:
|
180 |
+
input_ids = torch.tensor(self.tokens[:self.seq_len], dtype=torch.long)
|
181 |
+
self.tokens = self.tokens[self.seq_len:]
|
182 |
+
yield {'input_ids': input_ids}
|
183 |
+
|
184 |
+
def tokenize(self, data, buffer_size: int = 64):
|
185 |
+
buffer, states = [], []
|
186 |
+
for sample in data:
|
187 |
+
if sample.get('text', None) is not None:
|
188 |
+
buffer.append(sample['text'])
|
189 |
+
elif sample.get('content', None) is not None:
|
190 |
+
buffer.append(sample['content'])
|
191 |
+
else:
|
192 |
+
raise ValueError(f"No 'text' or 'content' field found in sample:\n{sample}")
|
193 |
+
states.append(self.data.state_dict())
|
194 |
+
if len(buffer) == buffer_size:
|
195 |
+
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
|
196 |
+
self.states = s
|
197 |
+
yield tokenized
|
198 |
+
buffer, states = [], []
|
199 |
+
if len(buffer) > 0:
|
200 |
+
for s, tokenized in zip(states, self.tokenizer(buffer, return_attention_mask=False)['input_ids']):
|
201 |
+
self.states = s
|
202 |
+
yield tokenized
|
203 |
+
|
204 |
+
def state_dict(self):
|
205 |
+
return {'states': self.states, 'tokens': deepcopy(self.tokens)}
|
206 |
+
|
207 |
+
def load_state_dict(self, state_dict):
|
208 |
+
self.states = state_dict['states']
|
209 |
+
self.tokens = deepcopy(state_dict['tokens'])
|
210 |
+
|
211 |
+
|
212 |
+
class BufferShuffledExamplesIterable(datasets.iterable_dataset.BufferShuffledExamplesIterable):
|
213 |
+
def __init__(self, *args, **kwargs):
|
214 |
+
super().__init__(*args, **kwargs)
|
215 |
+
|
216 |
+
def _init_state_dict(self) -> dict:
|
217 |
+
self._state_dict = self.ex_iterable._init_state_dict()
|
218 |
+
self._state_dict['mem_buffer'] = ([],)
|
219 |
+
self._state_dict['bit_generator_state'] = self.generator.bit_generator.state
|
220 |
+
self._state_dict['bit_generator_index_offset'] = 0
|
221 |
+
self._state_dict['bit_generator_index_offset_shuffle'] = 0
|
222 |
+
return self._state_dict
|
223 |
+
|
224 |
+
def __iter__(self):
|
225 |
+
buffer_size = self.buffer_size
|
226 |
+
rng = deepcopy(self.generator)
|
227 |
+
# this is the shuffle buffer that we keep in memory
|
228 |
+
mem_buffer = self._state_dict['mem_buffer'][0]
|
229 |
+
# this is an infinite iterator that randomly samples the index of the source to pick examples from
|
230 |
+
index_offset = self._state_dict['bit_generator_index_offset'] if self._state_dict else 0
|
231 |
+
if self._state_dict:
|
232 |
+
rng.bit_generator.state = self._state_dict['bit_generator_state']
|
233 |
+
indices_iterator = self._iter_random_indices(rng, buffer_size, random_batch_size=buffer_size)
|
234 |
+
# skip already consumed ones
|
235 |
+
for _ in range(index_offset):
|
236 |
+
i = next(indices_iterator)
|
237 |
+
|
238 |
+
for x in self.ex_iterable:
|
239 |
+
if len(mem_buffer) < buffer_size: # if the buffer is not full, keep filling the buffer
|
240 |
+
mem_buffer.append(x)
|
241 |
+
else: # otherwise, pick an example from it
|
242 |
+
i = next(indices_iterator)
|
243 |
+
index_offset = (index_offset + 1) % buffer_size
|
244 |
+
if self._state_dict:
|
245 |
+
self._state_dict['bit_generator_index_offset'] = index_offset
|
246 |
+
if index_offset == 0:
|
247 |
+
self._state_dict['bit_generator_state'] = rng.bit_generator.state
|
248 |
+
selected = mem_buffer[i]
|
249 |
+
mem_buffer[i] = x # replace the picked example by a new one
|
250 |
+
yield selected
|
251 |
+
|
252 |
+
index_offset = self._state_dict['bit_generator_index_offset_shuffle'] if self._state_dict else 0
|
253 |
+
if self._state_dict:
|
254 |
+
rng.bit_generator.state = self._state_dict['bit_generator_state']
|
255 |
+
|
256 |
+
# when we run out of examples, we shuffle the remaining examples in the buffer and yield them
|
257 |
+
for i in rng.permutation(len(mem_buffer))[index_offset:].tolist():
|
258 |
+
index_offset = index_offset + 1
|
259 |
+
if self._state_dict:
|
260 |
+
self._state_dict['bit_generator_index_offset_shuffle'] = index_offset
|
261 |
+
yield mem_buffer[i]
|
262 |
+
|
263 |
+
def shuffle_data_sources(self, generator: np.random.Generator) -> BufferShuffledExamplesIterable:
|
264 |
+
"""Shuffle the wrapped examples iterable as well as the shuffling buffer."""
|
265 |
+
return BufferShuffledExamplesIterable(
|
266 |
+
self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
|
267 |
+
)
|
268 |
+
|
269 |
+
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> BufferShuffledExamplesIterable:
|
270 |
+
"""Keep only the requested shard."""
|
271 |
+
return BufferShuffledExamplesIterable(
|
272 |
+
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
|
273 |
+
buffer_size=self.buffer_size,
|
274 |
+
generator=self.generator,
|
275 |
+
)
|
276 |
+
|
277 |
+
def load_state_dict(self, state_dict: dict) -> dict:
|
278 |
+
def _inner_load_state_dict(state, new_state):
|
279 |
+
if new_state is not None and isinstance(state, dict):
|
280 |
+
for key in new_state:
|
281 |
+
state[key] = _inner_load_state_dict(state[key], new_state[key])
|
282 |
+
return state
|
283 |
+
elif new_state is not None and isinstance(state, list):
|
284 |
+
for i in range(len(state)):
|
285 |
+
state[i] = _inner_load_state_dict(state[i], new_state[i])
|
286 |
+
return state
|
287 |
+
return new_state
|
288 |
+
|
289 |
+
return _inner_load_state_dict(self._state_dict, state_dict)
|
290 |
+
|
291 |
+
|
292 |
+
def shuffle(
|
293 |
+
dataset: IterableDataset,
|
294 |
+
seed: int = 42,
|
295 |
+
generator: np.random.Generator = None,
|
296 |
+
buffer_size: int = 1024,
|
297 |
+
):
|
298 |
+
generator = np.random.default_rng(seed) if generator is None else deepcopy(generator)
|
299 |
+
return IterableDataset(
|
300 |
+
ex_iterable=BufferShuffledExamplesIterable(dataset._ex_iterable, buffer_size=buffer_size, generator=generator),
|
301 |
+
info=dataset._info.copy(),
|
302 |
+
split=dataset._split,
|
303 |
+
formatting=dataset._formatting,
|
304 |
+
shuffling=ShufflingConfig(generator=generator, _original_seed=seed),
|
305 |
+
distributed=copy.deepcopy(dataset._distributed),
|
306 |
+
token_per_repo_id=dataset._token_per_repo_id,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
@dataclass
|
311 |
+
class DataCollatorForLanguageModeling:
|
312 |
+
"""
|
313 |
+
Data collator used for language modeling. Inputs are dynamically padded if `varlen=False`.
|
314 |
+
If `varlen=True`, sequences are expected to be concatenated, and labels match inputs.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
|
318 |
+
The tokenizer used for encoding the data.
|
319 |
+
context_len (`int`, optional):
|
320 |
+
When `varlen=True`, sequences longer than this length within a document
|
321 |
+
(as determined by `cu_seqlens`) will be further chunked.
|
322 |
+
varlen (`bool`):
|
323 |
+
Whether to handle variable length concatenated sequences (`True`) or padded batches (`False`).
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
A dictionary with the following keys:
|
327 |
+
- `input_ids`: Tensor of input IDs. Shape `[batch_size, seq_len]` if `varlen=False`, `[1, total_len]` if `varlen=True`.
|
328 |
+
- `labels`: Tensor of labels. Shape matches `input_ids`. Padding positions are masked with -100 if `varlen=False`.
|
329 |
+
- `attention_mask`: Tensor indicating non-padding tokens (only if `varlen=False`). Shape matches `input_ids`.
|
330 |
+
- `cu_seqlens`: Tensor of cumulative sequence lengths (only if `varlen=True`). Shape `[1, num_sequences + 1]`.
|
331 |
+
|
332 |
+
NOTE: When `varlen=True`, the `batch_size` must be 1.
|
333 |
+
"""
|
334 |
+
|
335 |
+
tokenizer: PreTrainedTokenizer
|
336 |
+
context_len: Optional[int] = None
|
337 |
+
varlen: bool = False
|
338 |
+
|
339 |
+
def __call__(self, examples: List[Union[List[int], Dict[str, Any]]]) -> Dict[str, Any]:
|
340 |
+
if not isinstance(examples[0], Dict):
|
341 |
+
examples = [{'input_ids': example} for example in examples]
|
342 |
+
|
343 |
+
def tensorize(example: Dict[str, Any]) -> Dict[str, Any]:
|
344 |
+
tensorized = {}
|
345 |
+
for key in ['input_ids', 'cu_seqlens']:
|
346 |
+
if key not in example:
|
347 |
+
continue
|
348 |
+
if isinstance(example[key], List):
|
349 |
+
tensorized[key] = torch.tensor(example[key], dtype=torch.long)
|
350 |
+
elif isinstance(example[key], np.ndarray):
|
351 |
+
tensorized[key] = torch.from_numpy(example[key])
|
352 |
+
else:
|
353 |
+
tensorized[key] = example[key]
|
354 |
+
return tensorized
|
355 |
+
|
356 |
+
examples = list(map(tensorize, examples))
|
357 |
+
|
358 |
+
if not self.varlen:
|
359 |
+
# --- Handling for varlen=False (Batch Padding) ---
|
360 |
+
length_of_first = examples[0]['input_ids'].size(0)
|
361 |
+
needs_padding = not all(example['input_ids'].size(0) == length_of_first for example in examples)
|
362 |
+
|
363 |
+
if needs_padding:
|
364 |
+
# Check for pad token if padding is actually required
|
365 |
+
if self.tokenizer.pad_token_id is None:
|
366 |
+
raise ValueError(
|
367 |
+
f'You are attempting to pad samples but the tokenizer you are using '
|
368 |
+
f'({self.tokenizer.__class__.__name__}) does not have a pad token.'
|
369 |
+
)
|
370 |
+
# Pad using the tokenizer, ensuring attention_mask is returned
|
371 |
+
batch = self.tokenizer.pad(examples, return_tensors='pt', return_attention_mask=True)
|
372 |
+
else:
|
373 |
+
# No padding needed, stack directly and create a full attention mask
|
374 |
+
input_ids = torch.stack([example['input_ids'] for example in examples], dim=0)
|
375 |
+
batch = {
|
376 |
+
'input_ids': input_ids,
|
377 |
+
# Create attention mask of all ones
|
378 |
+
'attention_mask': torch.ones_like(input_ids),
|
379 |
+
}
|
380 |
+
|
381 |
+
# Create labels by cloning input_ids
|
382 |
+
labels = batch['input_ids'].clone()
|
383 |
+
# Mask labels only where attention_mask is 0 (padding positions)
|
384 |
+
if 'attention_mask' in batch:
|
385 |
+
labels[batch['attention_mask'] == 0] = -100
|
386 |
+
batch['labels'] = labels
|
387 |
+
|
388 |
+
else:
|
389 |
+
# --- Handling for varlen=True (Concatenated Sequences) ---
|
390 |
+
if len(examples) > 1:
|
391 |
+
raise ValueError('The batch size must be 1 for inputs with variable lengths (varlen=True).')
|
392 |
+
|
393 |
+
batch = {'input_ids': torch.cat([example['input_ids'] for example in examples], dim=0).unsqueeze(0)}
|
394 |
+
|
395 |
+
# --- cu_seqlens calculation logic remains the same ---
|
396 |
+
if 'cu_seqlens' in examples[0]:
|
397 |
+
batch['cu_seqlens'] = (
|
398 |
+
torch.cat([example['cu_seqlens'] for example in examples], dim=0).unsqueeze(0).to(dtype=torch.int32)
|
399 |
+
) # Ensure int32
|
400 |
+
else:
|
401 |
+
# determine boundaries by bos/eos positions
|
402 |
+
# Check for bos_token_id first
|
403 |
+
if self.tokenizer.bos_token_id is not None:
|
404 |
+
cu_seqlens = []
|
405 |
+
# Handle case where the sequence doesn't start with BOS
|
406 |
+
if batch['input_ids'][0, 0] != self.tokenizer.bos_token_id:
|
407 |
+
cu_seqlens.append(torch.tensor([0], device=batch['input_ids'].device)) # Match device
|
408 |
+
# Find all BOS token positions
|
409 |
+
bos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.bos_token_id))[1]
|
410 |
+
# Ensure bos_positions is on the correct device if empty
|
411 |
+
if bos_positions.numel() == 0 and len(cu_seqlens) > 0:
|
412 |
+
cu_seqlens.append(bos_positions.to(cu_seqlens[0].device))
|
413 |
+
elif bos_positions.numel() > 0:
|
414 |
+
cu_seqlens.append(bos_positions)
|
415 |
+
# Add the end of the entire batch
|
416 |
+
cu_seqlens.append(
|
417 |
+
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
|
418 |
+
) # Match device and use size(1)
|
419 |
+
# Filter out empty tensors before cat
|
420 |
+
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
|
421 |
+
if not cu_seqlens: # Handle case where input is empty or has no BOS
|
422 |
+
batch['cu_seqlens'] = torch.tensor(
|
423 |
+
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
|
424 |
+
)
|
425 |
+
else:
|
426 |
+
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
|
427 |
+
|
428 |
+
# Else, check for eos_token_id
|
429 |
+
elif self.tokenizer.eos_token_id is not None:
|
430 |
+
cu_seqlens = [torch.tensor([0], device=batch['input_ids'].device)] # Match device
|
431 |
+
# Find positions *after* EOS tokens
|
432 |
+
eos_positions = torch.where(batch['input_ids'].eq(self.tokenizer.eos_token_id))[1] + 1
|
433 |
+
# Ensure eos_positions is on the correct device if empty
|
434 |
+
if eos_positions.numel() > 0:
|
435 |
+
cu_seqlens.append(eos_positions)
|
436 |
+
# Handle case where the sequence doesn't end with EOS
|
437 |
+
if batch['input_ids'][0, -1] != self.tokenizer.eos_token_id:
|
438 |
+
# Only add the final length if the last found EOS wasn't already the end
|
439 |
+
if eos_positions.numel() == 0 or eos_positions[-1] != batch['input_ids'].size(1):
|
440 |
+
cu_seqlens.append(
|
441 |
+
torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
|
442 |
+
) # Match device and use size(1)
|
443 |
+
# Filter out empty tensors before cat
|
444 |
+
cu_seqlens = [t for t in cu_seqlens if t.numel() > 0]
|
445 |
+
if not cu_seqlens: # Handle case where input is empty or has no EOS
|
446 |
+
batch['cu_seqlens'] = torch.tensor(
|
447 |
+
[0, batch['input_ids'].size(1)], dtype=torch.int32, device=batch['input_ids'].device
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
batch['cu_seqlens'] = torch.cat(cu_seqlens, dim=0).to(dtype=torch.int32)
|
451 |
+
# Else, neither BOS nor EOS is usable
|
452 |
+
else:
|
453 |
+
raise ValueError(
|
454 |
+
'For varlen=True without precomputed cu_seqlens, the tokenizer must have either a bos_token_id '
|
455 |
+
'or an eos_token_id defined to act as sequence separators.'
|
456 |
+
)
|
457 |
+
|
458 |
+
# --- cu_seqlens validation checks remain the same ---
|
459 |
+
if batch['cu_seqlens'].numel() < 2:
|
460 |
+
raise ValueError(f'Calculated cu_seqlens must have at least start and end: {batch["cu_seqlens"]}')
|
461 |
+
if not torch.all(batch['cu_seqlens'][1:] >= batch['cu_seqlens'][:-1]):
|
462 |
+
raise ValueError(f'Calculated cu_seqlens are not monotonically increasing: {batch["cu_seqlens"]}')
|
463 |
+
if batch['cu_seqlens'][0] != 0:
|
464 |
+
raise ValueError(f'Calculated cu_seqlens do not start at 0: {batch["cu_seqlens"]}')
|
465 |
+
if batch['cu_seqlens'][-1] != batch['input_ids'].size(1):
|
466 |
+
# Allow empty sequence case where cu_seqlens=[0, 0] and input_ids.size(1)=0
|
467 |
+
if not (batch['cu_seqlens'].tolist() == [0, 0] and batch['input_ids'].size(1) == 0):
|
468 |
+
raise ValueError(
|
469 |
+
f'Calculated cu_seqlens do not end at total length {batch["input_ids"].size(1)}: '
|
470 |
+
f'{batch["cu_seqlens"]}'
|
471 |
+
)
|
472 |
+
|
473 |
+
# --- context_len splitting logic remains the same ---
|
474 |
+
if self.context_len is not None:
|
475 |
+
# This logic splits sequences based on context_len *after* initial boundaries are found
|
476 |
+
bos = batch['cu_seqlens'][:-1].tolist()
|
477 |
+
eos = batch['cu_seqlens'][1:].tolist()
|
478 |
+
# Handle empty sequences between boundaries
|
479 |
+
split_boundaries = []
|
480 |
+
for i, j in zip(bos, eos):
|
481 |
+
if i < j: # Only process non-empty sequences
|
482 |
+
split_boundaries.append(torch.arange(i, j, self.context_len, device=batch['input_ids'].device))
|
483 |
+
# Add the final end point if it wasn't included by arange
|
484 |
+
final_end_point = torch.tensor([batch['input_ids'].size(1)], device=batch['input_ids'].device)
|
485 |
+
# Concatenate all boundaries
|
486 |
+
if not split_boundaries: # Handle case of completely empty input
|
487 |
+
batch['cu_seqlens'] = torch.tensor([0, 0], dtype=torch.int32, device=batch['input_ids'].device)
|
488 |
+
else:
|
489 |
+
batch['cu_seqlens'] = torch.cat(split_boundaries + [final_end_point]).to(dtype=torch.int32)
|
490 |
+
# Ensure uniqueness and sort, as arange might duplicate the endpoint
|
491 |
+
batch['cu_seqlens'] = torch.unique(batch['cu_seqlens'])
|
492 |
+
|
493 |
+
# Create labels directly from input_ids, NO padding mask needed for varlen
|
494 |
+
labels = batch['input_ids'].clone()
|
495 |
+
batch['labels'] = labels
|
496 |
+
|
497 |
+
return batch
|
498 |
+
|
499 |
+
|
500 |
+
class ParallelAwareDataLoader(StatefulDataLoader, Stateful):
|
501 |
+
"""
|
502 |
+
A wrapper around the StatefulDataLoader that ensures that the state is stored only once per DP rank.
|
503 |
+
"""
|
504 |
+
|
505 |
+
def __init__(
|
506 |
+
self,
|
507 |
+
rank: int,
|
508 |
+
dataset: IterableDataset,
|
509 |
+
batch_size: int,
|
510 |
+
collate_fn: Callable,
|
511 |
+
num_workers: int = 0,
|
512 |
+
pin_memory: bool = False,
|
513 |
+
prefetch_factor: int = 2,
|
514 |
+
persistent_workers: bool = False,
|
515 |
+
snapshot_every_n_steps: Optional[int] = 1,
|
516 |
+
):
|
517 |
+
super().__init__(
|
518 |
+
dataset=dataset,
|
519 |
+
batch_size=batch_size,
|
520 |
+
collate_fn=collate_fn,
|
521 |
+
num_workers=num_workers,
|
522 |
+
pin_memory=pin_memory,
|
523 |
+
prefetch_factor=prefetch_factor,
|
524 |
+
persistent_workers=persistent_workers,
|
525 |
+
snapshot_every_n_steps=snapshot_every_n_steps,
|
526 |
+
)
|
527 |
+
self.rank = rank
|
528 |
+
|
529 |
+
def state_dict(self) -> Dict[str, Any]:
|
530 |
+
# Store state only for dp rank to avoid replicating the same state across other dimensions
|
531 |
+
return {f'rank_{self.rank}': pickle.dumps(super().state_dict())}
|
532 |
+
|
533 |
+
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
534 |
+
# State being empty is valid
|
535 |
+
if not state_dict:
|
536 |
+
return
|
537 |
+
|
538 |
+
if f'rank_{self.rank}' not in state_dict:
|
539 |
+
logger.warning(f'DataLoader state is empty for dp rank {self.rank}, expected key rank_{self.rank}')
|
540 |
+
return
|
541 |
+
super().load_state_dict(pickle.loads(state_dict[f'rank_{self.rank}']))
|
542 |
+
|
543 |
+
|
544 |
+
def build_dataloader(
|
545 |
+
dataset: IterableDataset,
|
546 |
+
tokenizer: PreTrainedTokenizer,
|
547 |
+
rank: int,
|
548 |
+
world_size: int,
|
549 |
+
batch_size: int,
|
550 |
+
seq_len: int,
|
551 |
+
context_len: Optional[int] = None,
|
552 |
+
varlen: bool = False,
|
553 |
+
num_workers: int = 0,
|
554 |
+
pin_memory: bool = False,
|
555 |
+
persistent_workers: bool = False,
|
556 |
+
snapshot_every_n_steps: Optional[int] = 1,
|
557 |
+
):
|
558 |
+
dataset = OnlineTokenizedIterableDataset(
|
559 |
+
dataset=dataset, tokenizer=tokenizer, seq_len=seq_len, rank=rank, world_size=world_size
|
560 |
+
)
|
561 |
+
return ParallelAwareDataLoader(
|
562 |
+
rank=rank,
|
563 |
+
dataset=dataset,
|
564 |
+
batch_size=batch_size,
|
565 |
+
collate_fn=DataCollatorForLanguageModeling(tokenizer=tokenizer, context_len=context_len, varlen=varlen),
|
566 |
+
num_workers=num_workers,
|
567 |
+
pin_memory=pin_memory,
|
568 |
+
persistent_workers=persistent_workers,
|
569 |
+
snapshot_every_n_steps=snapshot_every_n_steps,
|
570 |
+
)
|
flame/models/__init__.py
ADDED
File without changes
|
flame/models/activation_offloading.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/pytorch/torchtune/blob/main/torchtune/training/_activation_offloading.py
|
2 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the BSD-style license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
import contextlib
|
9 |
+
from typing import Union
|
10 |
+
from warnings import warn
|
11 |
+
|
12 |
+
import psutil
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
from torch.autograd.graph import saved_tensors_hooks
|
16 |
+
|
17 |
+
from torchtitan.tools.logging import logger
|
18 |
+
|
19 |
+
try:
|
20 |
+
import torchao
|
21 |
+
from torchao.dtypes.nf4tensor import NF4Tensor
|
22 |
+
except ImportError:
|
23 |
+
torchao = None
|
24 |
+
NF4Tensor = None
|
25 |
+
logger.warning("torchao not found. ")
|
26 |
+
|
27 |
+
# from torchtune.modules import TiedLinear
|
28 |
+
|
29 |
+
|
30 |
+
class OffloadActivations(saved_tensors_hooks):
|
31 |
+
"""Context manager under which activation tensors created in the forward pass will be offloaded.
|
32 |
+
|
33 |
+
Enable the memory efficiency technique of activation offloading, where activations bigger than
|
34 |
+
min_offload_size bytes will be offloaded to CPU in the forward and brought back in the backward.
|
35 |
+
This is in contrast to maintaining the activation on GPU VRAM throughout the program.
|
36 |
+
|
37 |
+
This manager contains the option of using one additional CUDA stream to handle the communication
|
38 |
+
between CUDA and CPU, which is intended to overlap with the default computation stream to improve
|
39 |
+
runtime. We designed synchronization with a few heuristics for optimizing the tradeoff between
|
40 |
+
runtime vs memory usage.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
use_pin_memory (bool): Whether or not the offloaded Tensor will be placed in pinned
|
44 |
+
memory on the CPU. Pinned memory allows the Tensor to be moved back onto GPU more quickly
|
45 |
+
but is a limited resource. Default: True.
|
46 |
+
|
47 |
+
use_streams (bool): Whether or not to use streams for performance optimization where
|
48 |
+
the communications get overlapped with the computation. Requires a torch build
|
49 |
+
after torch-2.5.0.]. Default: True.
|
50 |
+
|
51 |
+
max_fwd_stash_size (int): The maximum size of the forward stash, or the maximum number of
|
52 |
+
consecutive activations to keep alive during the forward pass. This number must be at
|
53 |
+
least 1. Keeping alive more activations will potentially allow more overlap between the
|
54 |
+
communication and compute streams at the cost of increasing memory usage. Keeping alive
|
55 |
+
fewer activations will conserve memory, but may cause poor overlap between the streams,
|
56 |
+
increasing runtime. Default: 5.
|
57 |
+
|
58 |
+
min_offload_size (int): The minimum number of bytes a Tensor must be in order to qualify
|
59 |
+
for offloading. If the tensor is too small, we do not want to waste bandwidth and resources
|
60 |
+
moving it to CPU and back. Default: 1024 bytes.
|
61 |
+
|
62 |
+
Raises:
|
63 |
+
ValueError: if max_fwd_stash_size is not at least 1.
|
64 |
+
|
65 |
+
Example:
|
66 |
+
>>> with OffloadActivations():
|
67 |
+
>>> logits = model(inputs)
|
68 |
+
>>> loss = ...
|
69 |
+
>>> loss.backward()
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
use_pin_memory: bool = True,
|
75 |
+
use_streams: bool = True,
|
76 |
+
max_fwd_stash_size: int = 5,
|
77 |
+
min_offload_size: int = 1024,
|
78 |
+
) -> None:
|
79 |
+
|
80 |
+
self.use_streams: bool = use_streams
|
81 |
+
|
82 |
+
self.min_tensor_size_bytes = (
|
83 |
+
min_offload_size # we don't want to bother with small tensors
|
84 |
+
)
|
85 |
+
self.tracker = (
|
86 |
+
{}
|
87 |
+
) # tensor_id => (new_tensor, if_modified) ---> track what saved/offloaded tensors are where
|
88 |
+
self.tensor_id: int = 0
|
89 |
+
self.is_first_forward_call = True
|
90 |
+
self.is_first_backward_call = True
|
91 |
+
self.is_first_forward_pass = True
|
92 |
+
|
93 |
+
# managing cpu memory
|
94 |
+
self.use_pin_memory: bool = use_pin_memory
|
95 |
+
self.virtual_memory_safe_pct = (
|
96 |
+
60 # we should not exceed this percentage of memory
|
97 |
+
)
|
98 |
+
|
99 |
+
self.s0 = torch.cuda.default_stream() # comp stream
|
100 |
+
|
101 |
+
# for streaming
|
102 |
+
if self.use_streams:
|
103 |
+
self.s1 = torch.cuda.Stream() # comms stream
|
104 |
+
self.fwd_stash = {} # tensor_id => (activation, ev1)
|
105 |
+
if max_fwd_stash_size < 1:
|
106 |
+
raise ValueError(
|
107 |
+
f"max_fwd_stash_size should be at least 1 but is {max_fwd_stash_size}"
|
108 |
+
)
|
109 |
+
self.max_fwd_stash_size = max_fwd_stash_size
|
110 |
+
self.bwd_tensor_stash = {} # tensor_id => activation
|
111 |
+
self.bwd_ev_stash = {} # tensor_id => ev0
|
112 |
+
self.curr_graph_id = None
|
113 |
+
self.curr_autograd_node = None
|
114 |
+
|
115 |
+
# -------- platform util functions -------- #
|
116 |
+
def verify_sufficient_virtual_memory():
|
117 |
+
curr_pct = get_cpu_ram_pct()
|
118 |
+
if curr_pct > self.virtual_memory_safe_pct:
|
119 |
+
warn(
|
120 |
+
f"***** WARNING: {curr_pct=}% > {self.virtual_memory_safe_pct=}% of virtual memory used"
|
121 |
+
)
|
122 |
+
|
123 |
+
def get_cpu_ram_pct() -> float:
|
124 |
+
# get the percentage of memory used by the system
|
125 |
+
return psutil.virtual_memory().percent
|
126 |
+
|
127 |
+
def get_tensor_id() -> int:
|
128 |
+
# create a unique id for each tensor we are managing
|
129 |
+
self.tensor_id += 1
|
130 |
+
return self.tensor_id
|
131 |
+
|
132 |
+
def get_num_bytes_tensor(x: torch.Tensor) -> int:
|
133 |
+
# get the number of bytes in a tensor, for memory management purposes
|
134 |
+
return (
|
135 |
+
x.element_size() * x.nelement()
|
136 |
+
) # x.element_size() * x._base_storage().nbytes()
|
137 |
+
|
138 |
+
# -------- core pack / unpack work -------- #
|
139 |
+
def pack_tensor(activation: torch.Tensor) -> int:
|
140 |
+
# activations are passed in during forward pass - from here we take over and return a unique id
|
141 |
+
if self.is_first_forward_call:
|
142 |
+
assert (
|
143 |
+
len(self.tracker) == 0
|
144 |
+
), "backward pass should have cleared tracker of all tensors"
|
145 |
+
|
146 |
+
# set training phase trackers
|
147 |
+
self.is_first_forward_call = False
|
148 |
+
self.is_first_backward_call = True
|
149 |
+
|
150 |
+
# query for basic tensor info
|
151 |
+
num_bytes = get_num_bytes_tensor(activation)
|
152 |
+
tensor_id = get_tensor_id()
|
153 |
+
|
154 |
+
# only offload hefty bois if they're activations on CUDA (our heuristic
|
155 |
+
# for that is to check if they're not params or buffers)!
|
156 |
+
if (
|
157 |
+
activation.is_cuda
|
158 |
+
and num_bytes >= self.min_tensor_size_bytes
|
159 |
+
and (
|
160 |
+
not isinstance(activation, torch.nn.Parameter)
|
161 |
+
and not isinstance(activation, torch.nn.Buffer)
|
162 |
+
)
|
163 |
+
):
|
164 |
+
if self.use_streams:
|
165 |
+
# First, sync back and dereference previously offloaded tensors
|
166 |
+
# as the offloading should be done sufficiently long ago.
|
167 |
+
for id in [k for k in self.fwd_stash.keys()]:
|
168 |
+
if id <= tensor_id - self.max_fwd_stash_size:
|
169 |
+
_, ev = self.fwd_stash[id]
|
170 |
+
self.s0.wait_event(ev)
|
171 |
+
del self.fwd_stash[id]
|
172 |
+
else:
|
173 |
+
break
|
174 |
+
|
175 |
+
# Sync in, offload, and add an event to sync back later
|
176 |
+
self.s1.wait_stream(self.s0)
|
177 |
+
|
178 |
+
stream = self.s1 if self.use_streams else self.s0
|
179 |
+
with torch.cuda.stream(stream):
|
180 |
+
try:
|
181 |
+
cpu_tensor = torch.empty_like(
|
182 |
+
activation, pin_memory=self.use_pin_memory, device="cpu"
|
183 |
+
)
|
184 |
+
except NotImplementedError as e:
|
185 |
+
if (
|
186 |
+
isinstance(activation, NF4Tensor)
|
187 |
+
and torchao.__version__ < "0.6.0.dev20240917"
|
188 |
+
):
|
189 |
+
raise RuntimeError(
|
190 |
+
"Offloading NF4Tensors requires torchao-0.6.0.dev20240917 or later"
|
191 |
+
) from e
|
192 |
+
raise e
|
193 |
+
cpu_tensor.copy_(activation, non_blocking=True)
|
194 |
+
self.tracker[tensor_id] = (
|
195 |
+
cpu_tensor,
|
196 |
+
True,
|
197 |
+
) # True = (in future) modified
|
198 |
+
|
199 |
+
if self.use_streams:
|
200 |
+
event = self.s1.record_event()
|
201 |
+
|
202 |
+
# Stash to keep activation alive til s1 is done
|
203 |
+
self.fwd_stash[tensor_id] = (activation, event)
|
204 |
+
else:
|
205 |
+
self.tracker[tensor_id] = (
|
206 |
+
activation,
|
207 |
+
False,
|
208 |
+
) # False = not modified, tensor is as is
|
209 |
+
|
210 |
+
return tensor_id
|
211 |
+
|
212 |
+
def unpack_tensor_single_stream(unpack_tensor_id: int) -> torch.Tensor:
|
213 |
+
# backward pass - we are called with the tensor_id, which
|
214 |
+
# we will use to retrieve the saved/offloaded tensor
|
215 |
+
if self.is_first_backward_call:
|
216 |
+
if self.is_first_forward_pass:
|
217 |
+
self.is_first_forward_pass = False
|
218 |
+
if self.use_pin_memory:
|
219 |
+
verify_sufficient_virtual_memory()
|
220 |
+
|
221 |
+
self.is_first_backward_call = False
|
222 |
+
self.is_first_forward_call = True
|
223 |
+
|
224 |
+
assert (
|
225 |
+
unpack_tensor_id in self.tracker
|
226 |
+
), f"untracked tensor with id {unpack_tensor_id}"
|
227 |
+
|
228 |
+
maybe_gpu_tensor, modified = self.tracker[unpack_tensor_id]
|
229 |
+
if modified:
|
230 |
+
gpu_tensor = maybe_gpu_tensor.to("cuda", non_blocking=True)
|
231 |
+
maybe_gpu_tensor = gpu_tensor
|
232 |
+
|
233 |
+
# clear tensor from tracking
|
234 |
+
del self.tracker[unpack_tensor_id]
|
235 |
+
return maybe_gpu_tensor
|
236 |
+
|
237 |
+
def unpack_tensor_with_streams(unpack_tensor_id: int) -> torch.Tensor:
|
238 |
+
# backward pass - we are called with the tensor_id, which
|
239 |
+
# we will use to retrieve the saved/offloaded tensor
|
240 |
+
if self.is_first_backward_call:
|
241 |
+
self.curr_graph_id = torch._C._current_graph_task_id()
|
242 |
+
|
243 |
+
def wait_and_del_remaining_references() -> None:
|
244 |
+
for id in [k for k in self.bwd_tensor_stash.keys()]:
|
245 |
+
event = self.bwd_ev_stash[id]
|
246 |
+
self.s1.wait_event(event)
|
247 |
+
del self.bwd_tensor_stash[id]
|
248 |
+
|
249 |
+
# Register a callback to the end of autograd to clean everything up
|
250 |
+
torch.autograd.variable.Variable._execution_engine.queue_callback(
|
251 |
+
wait_and_del_remaining_references
|
252 |
+
)
|
253 |
+
|
254 |
+
if self.is_first_forward_pass:
|
255 |
+
self.is_first_forward_pass = False
|
256 |
+
if self.use_pin_memory:
|
257 |
+
verify_sufficient_virtual_memory()
|
258 |
+
|
259 |
+
self.is_first_backward_call = False
|
260 |
+
self.is_first_forward_call = True
|
261 |
+
|
262 |
+
assert (
|
263 |
+
unpack_tensor_id in self.tracker
|
264 |
+
), f"untracked tensor with id {unpack_tensor_id}"
|
265 |
+
|
266 |
+
maybe_gpu_tensor, modified = self.tracker[unpack_tensor_id]
|
267 |
+
if modified:
|
268 |
+
# Get data on the current autograd node
|
269 |
+
graph_id = torch._C._current_graph_task_id()
|
270 |
+
node = torch._C._current_autograd_node()
|
271 |
+
prev_node_ids = []
|
272 |
+
|
273 |
+
# If we're on a new node, mark prev node's tensors to be freed later
|
274 |
+
if graph_id == self.curr_graph_id and self.curr_autograd_node != node:
|
275 |
+
self.curr_autograd_node = node
|
276 |
+
prev_node_ids = [id for id in self.bwd_tensor_stash.keys()]
|
277 |
+
|
278 |
+
brought_back_from_cpu = True
|
279 |
+
if unpack_tensor_id in self.fwd_stash:
|
280 |
+
maybe_gpu_tensor = self.fwd_stash[unpack_tensor_id][0]
|
281 |
+
brought_back_from_cpu = False
|
282 |
+
else:
|
283 |
+
# Kick off the process to bring tensors back
|
284 |
+
with torch.cuda.stream(self.s1):
|
285 |
+
gpu_tensor = maybe_gpu_tensor.to("cuda", non_blocking=True)
|
286 |
+
maybe_gpu_tensor = gpu_tensor
|
287 |
+
|
288 |
+
# Tell comp stream to wait for the info to be loaded before executing
|
289 |
+
self.s0.wait_stream(self.s1)
|
290 |
+
|
291 |
+
# Stash the tensor to keep memory alive until compute stream is complete
|
292 |
+
self.bwd_tensor_stash[unpack_tensor_id] = maybe_gpu_tensor
|
293 |
+
|
294 |
+
# Note: [Track views of the unpacked]
|
295 |
+
# Why do we get the use count of the unpacked tensor here? We want an
|
296 |
+
# initial count to compare to later, during the post-hook of the
|
297 |
+
# backward node, when we need to decide whether we're allowed to free
|
298 |
+
# the tensor yet. In what obscure cases must we delay freeing the
|
299 |
+
# tensor (and thus call record_stream)?
|
300 |
+
# 1. Any of the outputs of the backward node is a view of the unpacked
|
301 |
+
# tensor.
|
302 |
+
# 2. In the case that this unpacked tensor will be used in a
|
303 |
+
# checkpointed region, if one of the recomputed saved tensors ends
|
304 |
+
# up as a view of the unpacked tensor.
|
305 |
+
# 3. The user abuses the system somehow and manually relies on the
|
306 |
+
# unpacked tensor to exist after the backward node has executed.
|
307 |
+
storage_refcount = torch._C._storage_Use_Count(
|
308 |
+
maybe_gpu_tensor.untyped_storage()._cdata
|
309 |
+
)
|
310 |
+
|
311 |
+
def hook(outputs, inputs):
|
312 |
+
# create events for the current node inputs/outputs if they were streamed in
|
313 |
+
if brought_back_from_cpu:
|
314 |
+
# See Note: [Track views of the unpacked]
|
315 |
+
# IF any of the outputs is a view of the tensor, OR if a view of
|
316 |
+
# the tensor has been saved as a part of checkpoint's recompute
|
317 |
+
# process, OR the user has abusedly incurred a reference on the
|
318 |
+
# unpacked tensor, THEN the tensor might be used later and we
|
319 |
+
# cannot presume to delete it after only the current node is
|
320 |
+
# done! So we use our frenemy, record_stream, to ensure the
|
321 |
+
# Tensor stays unmessed with until it's done getting used in the
|
322 |
+
# compute stream (s0 here). Note that the con here is we introduce
|
323 |
+
# non-deterministic (thus higher) memory usage, but this case
|
324 |
+
# should not happen often.
|
325 |
+
unpacked_tensor = self.bwd_tensor_stash[unpack_tensor_id]
|
326 |
+
if (
|
327 |
+
torch._C._storage_Use_Count(
|
328 |
+
unpacked_tensor.untyped_storage()._cdata
|
329 |
+
)
|
330 |
+
> storage_refcount
|
331 |
+
):
|
332 |
+
unpacked_tensor.record_stream(self.s0)
|
333 |
+
del self.bwd_tensor_stash[unpack_tensor_id]
|
334 |
+
else:
|
335 |
+
event = self.s0.record_event()
|
336 |
+
self.bwd_ev_stash[unpack_tensor_id] = event
|
337 |
+
|
338 |
+
# if there are still things in the fwd_stash, get rid of them as we're in bwd now
|
339 |
+
for id in [k for k in self.fwd_stash.keys()]:
|
340 |
+
_, ev = self.fwd_stash[id]
|
341 |
+
self.s0.wait_event(ev)
|
342 |
+
del self.fwd_stash[id]
|
343 |
+
|
344 |
+
# wait on prev node's events and del those
|
345 |
+
for id in prev_node_ids:
|
346 |
+
event = self.bwd_ev_stash[id]
|
347 |
+
self.s1.wait_event(event)
|
348 |
+
del self.bwd_tensor_stash[id]
|
349 |
+
|
350 |
+
return outputs
|
351 |
+
|
352 |
+
node.register_hook(hook)
|
353 |
+
|
354 |
+
# clear tensor from tracking
|
355 |
+
del self.tracker[unpack_tensor_id]
|
356 |
+
return maybe_gpu_tensor
|
357 |
+
|
358 |
+
unpack_tensor = (
|
359 |
+
unpack_tensor_with_streams
|
360 |
+
if self.use_streams
|
361 |
+
else unpack_tensor_single_stream
|
362 |
+
)
|
363 |
+
super().__init__(pack_tensor, unpack_tensor)
|
364 |
+
|
365 |
+
|
366 |
+
class NoOpManager(saved_tensors_hooks):
|
367 |
+
"""
|
368 |
+
A saved_tensors_hook manager used to disable any other saved_tensors_hook manager
|
369 |
+
applied before. This relies on the behavior that only the most recently registered
|
370 |
+
saved_tensors_hook will run.
|
371 |
+
|
372 |
+
One example usage is to opt a local region of code out of activations offloading,
|
373 |
+
which is usually applied globally to best track state.
|
374 |
+
"""
|
375 |
+
|
376 |
+
def __init__(self) -> None:
|
377 |
+
def noop(tensor):
|
378 |
+
return tensor
|
379 |
+
|
380 |
+
super().__init__(noop, noop)
|
381 |
+
|
382 |
+
|
383 |
+
def get_act_offloading_ctx_manager(
|
384 |
+
model: nn.Module, enable_activation_offloading: bool
|
385 |
+
) -> Union[OffloadActivations, contextlib.nullcontext]:
|
386 |
+
"""Returns the activation offloading context manager for the model, which will be
|
387 |
+
a null context if enable_activation_offloading is False.
|
388 |
+
|
389 |
+
If activation offloading is enabled, we return the OffloadActivations context manager.
|
390 |
+
If activation offloading is disabled, we return a NoOpManager context manager.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
model (nn.Module): the model to wrap with the activation offloading context manager.
|
394 |
+
enable_activation_offloading (bool): whether or not to enable activation offloading
|
395 |
+
for the model.
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
contextlib.ContextDecorator: the activation offloading context manager for the model.
|
399 |
+
|
400 |
+
Raises:
|
401 |
+
NotImplementedError: If the model is a multimodal model and activation offloading is enabled.
|
402 |
+
"""
|
403 |
+
if enable_activation_offloading:
|
404 |
+
activations_handling_ctx = OffloadActivations()
|
405 |
+
|
406 |
+
# Below is our hack to disable offloading the last output Linear in every
|
407 |
+
# step, as the cost for offloading the activation and then soon after bringing
|
408 |
+
# it back is expensive. Moreover, due to heuristics in our streaming API,
|
409 |
+
# we actually use more memory if we offload it as it interferes with chunkedCE.
|
410 |
+
output_head_detected = False
|
411 |
+
noop_ctx = NoOpManager()
|
412 |
+
|
413 |
+
if hasattr(model, "output"):
|
414 |
+
if isinstance(model.output, nn.Module):
|
415 |
+
model.output.register_forward_pre_hook(
|
416 |
+
lambda *args: noop_ctx.__enter__()
|
417 |
+
)
|
418 |
+
model.output.register_forward_hook(
|
419 |
+
lambda *args: noop_ctx.__exit__(), always_call=True
|
420 |
+
)
|
421 |
+
print("registering hooks for model.output ============ ")
|
422 |
+
output_head_detected = True
|
423 |
+
# ================================
|
424 |
+
# ! TODO[flame] check if we need to detal with TiedLinear
|
425 |
+
# The following code appears in `torchtune`
|
426 |
+
# elif isinstance(model.output, TiedLinear):
|
427 |
+
# model.output.linear.register_forward_pre_hook(
|
428 |
+
# lambda *args: noop_ctx.__enter__()
|
429 |
+
# )
|
430 |
+
# model.output.linear.register_forward_hook(
|
431 |
+
# lambda *args: noop_ctx.__exit__(), always_call=True
|
432 |
+
# )
|
433 |
+
# output_head_detected = True
|
434 |
+
|
435 |
+
if not output_head_detected:
|
436 |
+
logger.warning(
|
437 |
+
"During activation offloading, no output head was detected. "
|
438 |
+
"If your model has an output head, it will be offloaded. "
|
439 |
+
"This usually greatly slows training, given the large vocabulary size. "
|
440 |
+
"To change this behavior, set your output head as model.output and make it "
|
441 |
+
"an nn.Module."
|
442 |
+
)
|
443 |
+
|
444 |
+
else:
|
445 |
+
activations_handling_ctx = contextlib.nullcontext()
|
446 |
+
|
447 |
+
return activations_handling_ctx
|
flame/models/fla.toml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[model]
|
2 |
+
config = "fla-hub/transformer-1.3B-100B"
|
3 |
+
tokenizer_path = "fla-hub/transformer-1.3B-100B"
|
4 |
+
|
5 |
+
[job]
|
6 |
+
dump_folder = "exp"
|
7 |
+
print_args = true
|
8 |
+
|
9 |
+
[training]
|
10 |
+
batch_size = 32
|
11 |
+
seq_len = 2048
|
12 |
+
context_len = 2048
|
13 |
+
gradient_accumulation_steps = 1
|
14 |
+
steps = 20480
|
15 |
+
max_norm = 1.0
|
16 |
+
skip_nan_inf = true
|
17 |
+
data_parallel_replicate_degree = 1
|
18 |
+
data_parallel_shard_degree = -1
|
19 |
+
tensor_parallel_degree = 1
|
20 |
+
compile = false
|
21 |
+
dataset = "HuggingFaceFW/fineweb-edu"
|
22 |
+
dataset_name = "default"
|
23 |
+
num_workers = 32
|
24 |
+
pin_memory = false
|
25 |
+
persistent_workers = false
|
26 |
+
prefetch_factor = 2
|
27 |
+
seed = 42
|
28 |
+
varlen = false
|
29 |
+
|
30 |
+
[optimizer]
|
31 |
+
name = "AdamW"
|
32 |
+
eps = 1e-15
|
33 |
+
lr = 3e-4
|
34 |
+
|
35 |
+
[lr_scheduler]
|
36 |
+
warmup_steps = 1024
|
37 |
+
decay_type = "cosine"
|
38 |
+
lr_min = 0.1
|
39 |
+
|
40 |
+
[checkpoint]
|
41 |
+
enable_checkpoint = true
|
42 |
+
folder = "checkpoint"
|
43 |
+
interval_type = "steps"
|
44 |
+
interval = 2048
|
45 |
+
model_weights_only = false
|
46 |
+
export_dtype = "float32"
|
47 |
+
async_mode = "disabled" # ["disabled", "async", "async_with_pinned_mem"]
|
48 |
+
|
49 |
+
[profiling]
|
50 |
+
enable_profiling = true
|
51 |
+
save_traces_folder = "profile_trace"
|
52 |
+
profile_freq = 512
|
53 |
+
|
54 |
+
[metrics]
|
55 |
+
log_freq = 32
|
56 |
+
enable_wandb = true
|
57 |
+
|
58 |
+
[experimental]
|
59 |
+
context_parallel_degree = 1
|
60 |
+
pipeline_parallel_degree = 1
|
61 |
+
|
62 |
+
[float8]
|
63 |
+
enable_fsdp_float8_all_gather = false
|
64 |
+
precompute_float8_dynamic_scale_for_fsdp = false
|
65 |
+
|
66 |
+
[activation_checkpoint]
|
67 |
+
mode = "none"
|
flame/models/parallelize_fla.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# This file applies the PT-D parallelisms (except pipeline parallelism) and various
|
8 |
+
# training techniques (e.g. activation checkpointing and compile) to the Llama model.
|
9 |
+
|
10 |
+
from collections import defaultdict
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.distributed import DeviceMesh
|
15 |
+
from torch.distributed._composable.fsdp import CPUOffloadPolicy, MixedPrecisionPolicy, fully_shard
|
16 |
+
from torch.distributed._composable.replicate import replicate
|
17 |
+
from torch.distributed._tensor import Replicate, Shard
|
18 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import checkpoint_wrapper as ptd_checkpoint_wrapper
|
19 |
+
from torch.distributed.tensor.parallel import (
|
20 |
+
ColwiseParallel,
|
21 |
+
PrepareModuleInput,
|
22 |
+
PrepareModuleOutput,
|
23 |
+
RowwiseParallel,
|
24 |
+
SequenceParallel,
|
25 |
+
parallelize_module
|
26 |
+
)
|
27 |
+
|
28 |
+
from fla.modules.fused_linear_cross_entropy import LinearLossParallel
|
29 |
+
from fla.modules.mlp import SwiGLULinearParallel
|
30 |
+
from fla.modules.parallel import PrepareModuleWeight
|
31 |
+
from torchtitan.config_manager import TORCH_DTYPE_MAP, JobConfig
|
32 |
+
from torchtitan.distributed.parallel_dims import ParallelDims
|
33 |
+
from torchtitan.tools.logging import logger
|
34 |
+
|
35 |
+
|
36 |
+
def parallelize_fla(
|
37 |
+
model: nn.Module,
|
38 |
+
world_mesh: DeviceMesh,
|
39 |
+
parallel_dims: ParallelDims,
|
40 |
+
job_config: JobConfig,
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
Apply tensor parallelism, activation checkpointing, torch.compile, and data
|
44 |
+
parallelism to the model.
|
45 |
+
|
46 |
+
NOTE: The passed-in model preferably should be on meta device. Otherwise,
|
47 |
+
the model must fit on GPU or CPU memory.
|
48 |
+
"""
|
49 |
+
|
50 |
+
if parallel_dims.tp_enabled:
|
51 |
+
if (
|
52 |
+
job_config.experimental.enable_async_tensor_parallel
|
53 |
+
and not job_config.training.compile
|
54 |
+
):
|
55 |
+
raise RuntimeError("Async TP requires --training.compile")
|
56 |
+
enable_float8_linear = "float8" in job_config.model.converters
|
57 |
+
apply_tp(
|
58 |
+
model,
|
59 |
+
world_mesh["tp"],
|
60 |
+
loss_parallel=parallel_dims.loss_parallel_enabled,
|
61 |
+
enable_float8=enable_float8_linear,
|
62 |
+
enable_async_tp=job_config.experimental.enable_async_tensor_parallel,
|
63 |
+
)
|
64 |
+
|
65 |
+
if job_config.activation_checkpoint.mode != "none":
|
66 |
+
apply_ac(model, job_config.activation_checkpoint)
|
67 |
+
|
68 |
+
# turn on per-block compile after AC wrapping and before FSDP
|
69 |
+
if job_config.training.compile:
|
70 |
+
apply_compile(model)
|
71 |
+
|
72 |
+
if (
|
73 |
+
parallel_dims.dp_shard_enabled or parallel_dims.cp_enabled
|
74 |
+
): # apply FSDP or HSDP, potentially with Context Parallel
|
75 |
+
if parallel_dims.dp_replicate_enabled:
|
76 |
+
dp_mesh_dim_names = ("dp_replicate", "dp_shard_cp")
|
77 |
+
else:
|
78 |
+
dp_mesh_dim_names = ("dp_shard_cp",)
|
79 |
+
|
80 |
+
apply_fsdp(
|
81 |
+
model,
|
82 |
+
world_mesh[tuple(dp_mesh_dim_names)],
|
83 |
+
param_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_param],
|
84 |
+
reduce_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_reduce],
|
85 |
+
pp_enabled=parallel_dims.pp_enabled,
|
86 |
+
cpu_offload=job_config.training.enable_cpu_offload,
|
87 |
+
reshard_after_forward_policy=job_config.training.fsdp_reshard_after_forward,
|
88 |
+
)
|
89 |
+
|
90 |
+
if parallel_dims.dp_replicate_enabled:
|
91 |
+
logger.info("Applied HSDP to the model")
|
92 |
+
else:
|
93 |
+
logger.info("Applied FSDP to the model")
|
94 |
+
|
95 |
+
if parallel_dims.cp_enabled:
|
96 |
+
logger.info("Applied Context Parallel to the model")
|
97 |
+
|
98 |
+
if job_config.training.enable_cpu_offload:
|
99 |
+
logger.info("Applied CPU Offloading to the model")
|
100 |
+
elif parallel_dims.dp_replicate_enabled:
|
101 |
+
if world_mesh.ndim > 1:
|
102 |
+
raise RuntimeError("DDP has not supported > 1D parallelism")
|
103 |
+
apply_ddp(
|
104 |
+
model,
|
105 |
+
world_mesh,
|
106 |
+
enable_compile=job_config.training.compile,
|
107 |
+
enable_compiled_autograd=job_config.experimental.enable_compiled_autograd,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
class TPPlan:
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
model=None,
|
115 |
+
loss_parallel=False,
|
116 |
+
enable_float8=False,
|
117 |
+
):
|
118 |
+
self.model = model
|
119 |
+
self.loss_parallel = loss_parallel
|
120 |
+
self.enable_float8 = enable_float8
|
121 |
+
self.base_model_prefix = getattr(model, "base_model_prefix", "model")
|
122 |
+
|
123 |
+
# TODO(vkuzo): once float8 configuration supports delayed scaling,
|
124 |
+
# add a check here to enforce supported float8 all-gather configurations
|
125 |
+
# TODO(vkuzo): add the items below to __init__.py of torchao.float8 and import from there
|
126 |
+
try:
|
127 |
+
from torchao.float8.float8_tensor_parallel import (
|
128 |
+
Float8ColwiseParallel,
|
129 |
+
Float8RowwiseParallel,
|
130 |
+
PrepareFloat8ModuleInput
|
131 |
+
)
|
132 |
+
except ImportError:
|
133 |
+
Float8ColwiseParallel = None
|
134 |
+
Float8RowwiseParallel = None
|
135 |
+
PrepareFloat8ModuleInput = None
|
136 |
+
if self.enable_float8 and Float8ColwiseParallel is not None:
|
137 |
+
self.rowwise_parallel = Float8RowwiseParallel
|
138 |
+
self.colwise_parallel = Float8ColwiseParallel
|
139 |
+
self.prepare_module_input = PrepareFloat8ModuleInput
|
140 |
+
self.prepare_module_output = PrepareModuleOutput
|
141 |
+
else:
|
142 |
+
self.rowwise_parallel = RowwiseParallel
|
143 |
+
self.colwise_parallel = ColwiseParallel
|
144 |
+
self.prepare_module_input = PrepareModuleInput
|
145 |
+
self.prepare_module_output = PrepareModuleOutput
|
146 |
+
|
147 |
+
@property
|
148 |
+
def model_plan(self):
|
149 |
+
plans = {
|
150 |
+
f"{self.base_model_prefix}.embeddings": RowwiseParallel(
|
151 |
+
input_layouts=Replicate(),
|
152 |
+
output_layouts=Shard(1),
|
153 |
+
),
|
154 |
+
f"{self.base_model_prefix}.norm": SequenceParallel(),
|
155 |
+
}
|
156 |
+
if self.loss_parallel:
|
157 |
+
plans.update(
|
158 |
+
{
|
159 |
+
"lm_head": ColwiseParallel(
|
160 |
+
input_layouts=Shard(1),
|
161 |
+
output_layouts=Shard(-1) if self.loss_parallel else Replicate(),
|
162 |
+
use_local_output=not self.loss_parallel,
|
163 |
+
),
|
164 |
+
}
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
plans.update(
|
168 |
+
{
|
169 |
+
"lm_head": PrepareModuleWeight(layouts=Replicate()),
|
170 |
+
"criterion": LinearLossParallel(),
|
171 |
+
}
|
172 |
+
)
|
173 |
+
return plans
|
174 |
+
|
175 |
+
@property
|
176 |
+
def layer_plan(self):
|
177 |
+
return {
|
178 |
+
"attn_norm": SequenceParallel(),
|
179 |
+
**self.attn_plan,
|
180 |
+
"mlp_norm": SequenceParallel(),
|
181 |
+
**self.mlp_plan,
|
182 |
+
}
|
183 |
+
|
184 |
+
@property
|
185 |
+
def attn_plan(self):
|
186 |
+
raise NotImplementedError(
|
187 |
+
f"TP plans for token mixing layers of {self.model.config.model_type} not implemented"
|
188 |
+
)
|
189 |
+
|
190 |
+
@property
|
191 |
+
def mlp_plan(self):
|
192 |
+
return {
|
193 |
+
"mlp": self.prepare_module_input(
|
194 |
+
input_layouts=(Shard(1),),
|
195 |
+
desired_input_layouts=(Replicate(),),
|
196 |
+
),
|
197 |
+
"mlp.gate_proj": self.colwise_parallel(),
|
198 |
+
"mlp.up_proj": self.colwise_parallel(),
|
199 |
+
"mlp.down_proj": self.rowwise_parallel(output_layouts=Shard(1)),
|
200 |
+
"mlp.swiglu_linear": SwiGLULinearParallel(output_layouts=Shard(1)),
|
201 |
+
}
|
202 |
+
|
203 |
+
|
204 |
+
class TransformerTPPlan(TPPlan):
|
205 |
+
|
206 |
+
@property
|
207 |
+
def attn_plan(self):
|
208 |
+
return {
|
209 |
+
"attn": self.prepare_module_input(
|
210 |
+
input_kwarg_layouts={"hidden_states": Shard(1)},
|
211 |
+
desired_input_kwarg_layouts={"hidden_states": Replicate()},
|
212 |
+
),
|
213 |
+
"attn.q_proj": self.colwise_parallel(),
|
214 |
+
"attn.k_proj": self.colwise_parallel(),
|
215 |
+
"attn.v_proj": self.colwise_parallel(),
|
216 |
+
"attn.o_proj": self.rowwise_parallel(output_layouts=Shard(1)),
|
217 |
+
}
|
218 |
+
|
219 |
+
|
220 |
+
class GLATPPlan(TPPlan):
|
221 |
+
|
222 |
+
@property
|
223 |
+
def attn_plan(self):
|
224 |
+
return {
|
225 |
+
"attn": self.prepare_module_input(
|
226 |
+
input_kwarg_layouts={"hidden_states": Shard(1)},
|
227 |
+
desired_input_kwarg_layouts={"hidden_states": Replicate()},
|
228 |
+
),
|
229 |
+
"attn.q_proj": self.colwise_parallel(),
|
230 |
+
"attn.k_proj": self.colwise_parallel(),
|
231 |
+
"attn.v_proj": self.colwise_parallel(),
|
232 |
+
"attn.g_proj": self.colwise_parallel(),
|
233 |
+
"attn.gk_proj.0": PrepareModuleWeight(layouts=Replicate()),
|
234 |
+
"attn.gk_proj.1": self.colwise_parallel(),
|
235 |
+
"attn.g_norm": SequenceParallel(sequence_dim=-1),
|
236 |
+
"attn.o_proj": self.rowwise_parallel(output_layouts=Shard(1)),
|
237 |
+
}
|
238 |
+
|
239 |
+
|
240 |
+
TP_PLAN_MAP = {"transformer": TransformerTPPlan, "gla": GLATPPlan}
|
241 |
+
|
242 |
+
|
243 |
+
def apply_tp(
|
244 |
+
model: nn.Module,
|
245 |
+
tp_mesh: DeviceMesh,
|
246 |
+
loss_parallel: bool,
|
247 |
+
enable_float8: bool,
|
248 |
+
enable_async_tp: bool,
|
249 |
+
):
|
250 |
+
"""Apply tensor parallelism."""
|
251 |
+
# 1. Parallelize the embedding and shard its outputs (which are the first
|
252 |
+
# transformer block's inputs)
|
253 |
+
# 2. Parallelize the root norm layer over the sequence dim
|
254 |
+
# 3. Parallelize the final linear output layer
|
255 |
+
tp_plan = TP_PLAN_MAP[model.config.model_type](
|
256 |
+
model, loss_parallel=loss_parallel, enable_float8=enable_float8
|
257 |
+
)
|
258 |
+
parallelize_module(model, tp_mesh, tp_plan.model_plan)
|
259 |
+
|
260 |
+
blocks = get_blocks(model)
|
261 |
+
if blocks is None:
|
262 |
+
logger.warning("No block found for tensor parallelism")
|
263 |
+
else:
|
264 |
+
for _, block in enumerate(blocks):
|
265 |
+
parallelize_module(
|
266 |
+
module=block,
|
267 |
+
device_mesh=tp_mesh,
|
268 |
+
parallelize_plan=tp_plan.layer_plan,
|
269 |
+
)
|
270 |
+
|
271 |
+
if enable_async_tp:
|
272 |
+
from torch.distributed._symmetric_memory import enable_symm_mem_for_group
|
273 |
+
|
274 |
+
torch._inductor.config._micro_pipeline_tp = True
|
275 |
+
enable_symm_mem_for_group(tp_mesh.get_group().group_name)
|
276 |
+
|
277 |
+
logger.info(
|
278 |
+
f"Applied {'Float8 ' if enable_float8 else ''}{'Async ' if enable_async_tp else ''}"
|
279 |
+
"Tensor Parallelism to the model"
|
280 |
+
)
|
281 |
+
|
282 |
+
|
283 |
+
# for selective op activation checkpointing
|
284 |
+
_save_list = {
|
285 |
+
torch.ops.aten.mm.default,
|
286 |
+
torch.ops.aten._scaled_dot_product_efficient_attention.default,
|
287 |
+
torch.ops.aten._scaled_dot_product_flash_attention.default,
|
288 |
+
torch.ops._c10d_functional.reduce_scatter_tensor.default,
|
289 |
+
# for low precision training, it's useful to always save
|
290 |
+
# the result of max, since the absolute maximum is
|
291 |
+
# used to compute the scaling factor for quantization.
|
292 |
+
torch.ops.aten.max.default,
|
293 |
+
}
|
294 |
+
|
295 |
+
|
296 |
+
def _apply_ac_to_block(module: nn.Module, ac_config):
|
297 |
+
valid_ac_modes = ("full", "selective")
|
298 |
+
if ac_config.mode not in valid_ac_modes:
|
299 |
+
raise ValueError(
|
300 |
+
f"Invalid AC mode: {ac_config.mode}. Valid modes: {valid_ac_modes}"
|
301 |
+
)
|
302 |
+
|
303 |
+
if ac_config.mode == "full":
|
304 |
+
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
|
305 |
+
|
306 |
+
assert ac_config.mode == "selective", f"{ac_config.mode}"
|
307 |
+
use_op_sac = ac_config.selective_ac_option == "op"
|
308 |
+
use_layer_sac = ac_config.selective_ac_option.isdigit()
|
309 |
+
if not use_op_sac and not use_layer_sac:
|
310 |
+
raise ValueError(
|
311 |
+
f"Invalid selective AC option: {ac_config.selective_ac_option}. "
|
312 |
+
f"Valid options: 'op' or a positive int representing layer frequency"
|
313 |
+
)
|
314 |
+
if use_op_sac:
|
315 |
+
from torch.utils.checkpoint import CheckpointPolicy, create_selective_checkpoint_contexts
|
316 |
+
|
317 |
+
def _get_custom_policy(meta):
|
318 |
+
def _custom_policy(ctx, func, *args, **kwargs):
|
319 |
+
mode = "recompute" if ctx.is_recompute else "forward"
|
320 |
+
mm_count_key = f"{mode}_mm_count"
|
321 |
+
if func == torch.ops.aten.mm.default:
|
322 |
+
meta[mm_count_key] += 1
|
323 |
+
# Saves output of all compute ops, except every second mm
|
324 |
+
to_save = func in _save_list and not (
|
325 |
+
func == torch.ops.aten.mm.default and meta[mm_count_key] % 2 == 0
|
326 |
+
)
|
327 |
+
return (
|
328 |
+
CheckpointPolicy.MUST_SAVE
|
329 |
+
if to_save
|
330 |
+
else CheckpointPolicy.PREFER_RECOMPUTE
|
331 |
+
)
|
332 |
+
|
333 |
+
return _custom_policy
|
334 |
+
|
335 |
+
def selective_checkpointing_context_fn():
|
336 |
+
meta = defaultdict(int)
|
337 |
+
return create_selective_checkpoint_contexts(_get_custom_policy(meta))
|
338 |
+
|
339 |
+
return ptd_checkpoint_wrapper(
|
340 |
+
module,
|
341 |
+
context_fn=selective_checkpointing_context_fn,
|
342 |
+
preserve_rng_state=False,
|
343 |
+
)
|
344 |
+
elif use_layer_sac:
|
345 |
+
# Checkpoint every `ac_freq` of the modules passed to this function
|
346 |
+
ac_freq = int(ac_config.selective_ac_option)
|
347 |
+
ptd_checkpoint_wrapper.__dict__.setdefault("_count", 0)
|
348 |
+
ptd_checkpoint_wrapper._count += 1
|
349 |
+
if not ac_freq or ptd_checkpoint_wrapper._count % ac_freq == 0:
|
350 |
+
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
|
351 |
+
else:
|
352 |
+
return module
|
353 |
+
|
354 |
+
|
355 |
+
def apply_ac(model: nn.Module, ac_config):
|
356 |
+
"""Apply activation checkpointing to the model."""
|
357 |
+
blocks = get_blocks(model)
|
358 |
+
if blocks is None:
|
359 |
+
logger.warning("No block found for activation checkpointing")
|
360 |
+
return
|
361 |
+
|
362 |
+
for layer_id, block in blocks.named_children():
|
363 |
+
block = _apply_ac_to_block(block, ac_config)
|
364 |
+
blocks.register_module(layer_id, block)
|
365 |
+
|
366 |
+
logger.info(f"Applied {ac_config.mode} activation checkpointing to the model")
|
367 |
+
|
368 |
+
|
369 |
+
def apply_compile(model: nn.Module):
|
370 |
+
"""
|
371 |
+
Apply torch.compile to each block, which makes compilation efficient due to
|
372 |
+
repeated structure. Alternatively one can compile the whole model (after applying DP).
|
373 |
+
"""
|
374 |
+
|
375 |
+
blocks = get_blocks(model)
|
376 |
+
if blocks is None:
|
377 |
+
logger.warning("No block found for torch.compile")
|
378 |
+
else:
|
379 |
+
for layer_id, block in blocks.named_children():
|
380 |
+
block = torch.compile(block)
|
381 |
+
blocks.register_module(layer_id, block)
|
382 |
+
logger.info("Compiling each block with torch.compile")
|
383 |
+
|
384 |
+
real_model = get_model(model)
|
385 |
+
|
386 |
+
logger.info("Compiling the embedding, norm, and lm_head layers with torch.compile")
|
387 |
+
embeddings_key = get_components_name(real_model, "tok_embeddings")
|
388 |
+
if embeddings_key is not None:
|
389 |
+
embeddings = torch.compile(getattr(real_model, embeddings_key), fullgraph=True)
|
390 |
+
real_model.register_module(embeddings_key, embeddings)
|
391 |
+
|
392 |
+
norm_key = get_components_name(real_model, "norm")
|
393 |
+
if norm_key is not None:
|
394 |
+
norm = torch.compile(getattr(real_model, norm_key), fullgraph=True)
|
395 |
+
real_model.register_module(norm_key, norm)
|
396 |
+
|
397 |
+
lm_head_key = get_components_name(model, "lm_head")
|
398 |
+
if lm_head_key is not None:
|
399 |
+
lm_head = torch.compile(getattr(model, lm_head_key), fullgraph=True)
|
400 |
+
model.register_module(lm_head_key, lm_head)
|
401 |
+
|
402 |
+
logger.info("Compiling the entire model with torch.compile")
|
403 |
+
model = torch.compile(model)
|
404 |
+
|
405 |
+
|
406 |
+
def apply_fsdp(
|
407 |
+
model: nn.Module,
|
408 |
+
dp_mesh: DeviceMesh,
|
409 |
+
param_dtype: torch.dtype,
|
410 |
+
reduce_dtype: torch.dtype,
|
411 |
+
pp_enabled: bool,
|
412 |
+
cpu_offload: bool = False,
|
413 |
+
reshard_after_forward_policy: str = "default",
|
414 |
+
):
|
415 |
+
"""
|
416 |
+
Apply data parallelism (via FSDP2) to the model.
|
417 |
+
|
418 |
+
Args:
|
419 |
+
model (nn.Module): The model to apply data parallelism to.
|
420 |
+
dp_mesh (DeviceMesh): The device mesh to use for data parallelism.
|
421 |
+
param_dtype (torch.dtype): The data type to use for model parameters.
|
422 |
+
reduce_dtype (torch.dtype): The data type to use for reduction operations.
|
423 |
+
pp_enabled (bool): Whether pipeline parallelism is enabled.
|
424 |
+
cpu_offload (bool, optional): Whether to offload model parameters to CPU. Defaults to False.
|
425 |
+
reshard_after_forward_policy (str, optional):
|
426 |
+
The policy to use for resharding after forward pass. Defaults to "default".
|
427 |
+
Other options: "never", "always".
|
428 |
+
- "default" applies default resharding behavior, implementing "smart defaults" for known optimal scenarios.
|
429 |
+
- "always" will enable `reshard_after_forward` for all forward passes.
|
430 |
+
- "never" will disable `reshard_after_forward` for all forward passes.
|
431 |
+
|
432 |
+
"""
|
433 |
+
mp_policy = MixedPrecisionPolicy(param_dtype=param_dtype, reduce_dtype=reduce_dtype)
|
434 |
+
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
|
435 |
+
if cpu_offload:
|
436 |
+
fsdp_config["offload_policy"] = CPUOffloadPolicy()
|
437 |
+
|
438 |
+
blocks = get_blocks(model)
|
439 |
+
if blocks is None:
|
440 |
+
logger.warning("No block found for FSDP")
|
441 |
+
else:
|
442 |
+
total_blocks = len(blocks)
|
443 |
+
for layer_id, block in enumerate(blocks):
|
444 |
+
if reshard_after_forward_policy == "always":
|
445 |
+
reshard_after_forward = True
|
446 |
+
elif reshard_after_forward_policy == "never":
|
447 |
+
reshard_after_forward = False
|
448 |
+
elif reshard_after_forward_policy == "default":
|
449 |
+
if pp_enabled:
|
450 |
+
# For PP, do not reshard after forward to avoid per-microbatch
|
451 |
+
# all-gathers, which can be expensive and non-overlapped
|
452 |
+
reshard_after_forward = False
|
453 |
+
else:
|
454 |
+
# As an optimization, do not reshard after forward for the last
|
455 |
+
# transformer block since FSDP would prefetch it immediately
|
456 |
+
reshard_after_forward = int(layer_id) < total_blocks - 1
|
457 |
+
else:
|
458 |
+
raise ValueError(
|
459 |
+
f"Invalid reshard_after_forward_policy: {reshard_after_forward_policy}."
|
460 |
+
)
|
461 |
+
fully_shard(
|
462 |
+
block,
|
463 |
+
**fsdp_config,
|
464 |
+
reshard_after_forward=reshard_after_forward,
|
465 |
+
)
|
466 |
+
|
467 |
+
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
|
468 |
+
|
469 |
+
|
470 |
+
def apply_ddp(
|
471 |
+
model: nn.Module,
|
472 |
+
dp_mesh: DeviceMesh,
|
473 |
+
enable_compile: bool,
|
474 |
+
enable_compiled_autograd: bool,
|
475 |
+
):
|
476 |
+
if enable_compile:
|
477 |
+
if enable_compiled_autograd:
|
478 |
+
torch._dynamo.config.optimize_ddp = (
|
479 |
+
"python_reducer_without_compiled_forward"
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
torch._dynamo.config.optimize_ddp = "ddp_optimizer"
|
483 |
+
|
484 |
+
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
|
485 |
+
|
486 |
+
logger.info("Applied DDP to the model")
|
487 |
+
|
488 |
+
|
489 |
+
def get_model(model):
|
490 |
+
base_model_prefix = getattr(model, "base_model_prefix", "model")
|
491 |
+
if not hasattr(model, base_model_prefix):
|
492 |
+
return None
|
493 |
+
model = getattr(model, base_model_prefix)
|
494 |
+
return model
|
495 |
+
|
496 |
+
|
497 |
+
def get_blocks(model):
|
498 |
+
# TODO[flame]: adapt for network not using 'layers' attribute
|
499 |
+
model = get_model(model)
|
500 |
+
if not hasattr(model, "layers"):
|
501 |
+
logger.warning('no "layers" in model can be found')
|
502 |
+
return None
|
503 |
+
return model.layers
|
504 |
+
|
505 |
+
|
506 |
+
def get_components_name(model, component_name):
|
507 |
+
"""
|
508 |
+
We try to catch tok_embeddings, norm layers and lm_head layers
|
509 |
+
We do not catch the layer names in the blocks, for blocks see `get_blocks`
|
510 |
+
We assume the model has the following structure:
|
511 |
+
LlamaForCausalLM:
|
512 |
+
Model:
|
513 |
+
embed_tokens,
|
514 |
+
layers,
|
515 |
+
norm,
|
516 |
+
lm_head
|
517 |
+
***
|
518 |
+
so, to search 'tok_embeddings' and 'norm' we need to pass `get_model(model)`
|
519 |
+
and for 'lm_head' we need to pass `model`
|
520 |
+
***
|
521 |
+
"""
|
522 |
+
|
523 |
+
if component_name == "tok_embeddings":
|
524 |
+
if hasattr(model, "tok_embeddings"):
|
525 |
+
return "tok_embeddings"
|
526 |
+
elif hasattr(model, "embed_tokens"):
|
527 |
+
return "embed_tokens"
|
528 |
+
elif hasattr(model, "embeddings"):
|
529 |
+
return "embeddings"
|
530 |
+
else:
|
531 |
+
logger.warning("No tok_embeddings found in model")
|
532 |
+
return None
|
533 |
+
|
534 |
+
elif component_name == "norm":
|
535 |
+
if hasattr(model, "norm"):
|
536 |
+
return "norm"
|
537 |
+
elif hasattr(model, "norms"):
|
538 |
+
return "norms"
|
539 |
+
elif hasattr(model, "layernorm"):
|
540 |
+
return "layernorm"
|
541 |
+
else:
|
542 |
+
logger.warning("No norm found in model")
|
543 |
+
return None
|
544 |
+
|
545 |
+
elif component_name == "lm_head":
|
546 |
+
if hasattr(model, "lm_head"):
|
547 |
+
return "lm_head"
|
548 |
+
else:
|
549 |
+
logger.warning("No lm_head found in model")
|
550 |
+
return None
|
flame/models/pipeline_fla.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# This file applies the PT-D pipeline parallelism to the Llama model.
|
8 |
+
|
9 |
+
import copy
|
10 |
+
from typing import Callable, Optional, Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.distributed import DeviceMesh
|
15 |
+
from torch.distributed.pipelining import PipelineStage
|
16 |
+
from torch.distributed.pipelining.schedules import ScheduleZBVZeroBubble, _PipelineSchedule, get_schedule_class
|
17 |
+
from transformers import PretrainedConfig
|
18 |
+
|
19 |
+
from flame.models.parallelize_fla import get_blocks, get_components_name, get_model
|
20 |
+
from torchtitan.config_manager import JobConfig
|
21 |
+
from torchtitan.distributed.parallel_dims import ParallelDims
|
22 |
+
from torchtitan.distributed.pipeline import build_pipeline_schedule, generate_split_points, stage_ids_this_rank
|
23 |
+
from torchtitan.tools.logging import logger
|
24 |
+
|
25 |
+
DeviceType = Union[int, str, torch.device]
|
26 |
+
|
27 |
+
|
28 |
+
def pipeline_fla(
|
29 |
+
model: nn.Module,
|
30 |
+
pp_mesh: DeviceMesh,
|
31 |
+
parallel_dims: ParallelDims,
|
32 |
+
job_config: JobConfig,
|
33 |
+
device: DeviceType,
|
34 |
+
model_config: PretrainedConfig,
|
35 |
+
loss_fn: Callable[..., torch.Tensor],
|
36 |
+
) -> tuple[_PipelineSchedule, list[nn.Module], bool, bool]:
|
37 |
+
stages, models = pipeline_fla_manual_split(
|
38 |
+
model, pp_mesh, parallel_dims, job_config, device, model_config
|
39 |
+
)
|
40 |
+
|
41 |
+
pp_schedule = build_pipeline_schedule(job_config, stages, loss_fn)
|
42 |
+
|
43 |
+
# This is used in the train loop to determine whether to pass in the input_ids and labels
|
44 |
+
has_first_stage = False
|
45 |
+
has_last_stage = False
|
46 |
+
for stage in stages:
|
47 |
+
if stage.is_first:
|
48 |
+
has_first_stage = True
|
49 |
+
if stage.is_last:
|
50 |
+
has_last_stage = True
|
51 |
+
|
52 |
+
return pp_schedule, models, has_first_stage, has_last_stage
|
53 |
+
|
54 |
+
|
55 |
+
def pipeline_fla_manual_split(
|
56 |
+
whole_model: nn.Module,
|
57 |
+
pp_mesh: DeviceMesh,
|
58 |
+
parallel_dims: ParallelDims,
|
59 |
+
job_config: JobConfig,
|
60 |
+
device: DeviceType,
|
61 |
+
model_config: PretrainedConfig,
|
62 |
+
) -> tuple[list[PipelineStage], list[nn.Module]]:
|
63 |
+
"""
|
64 |
+
This API extracts one torch.nn.Module objects for the part of the model configured to run inside this stage.
|
65 |
+
|
66 |
+
It wraps the model chunk in a ManualPipelineStage object and returns both the stage and model objects.
|
67 |
+
|
68 |
+
The stage object is used to create a pipeline schedule, and the model object can be used for applying SPMD
|
69 |
+
parallelism.
|
70 |
+
"""
|
71 |
+
pp_rank = pp_mesh.get_local_rank()
|
72 |
+
pp_size = pp_mesh.size()
|
73 |
+
|
74 |
+
splits = (
|
75 |
+
job_config.experimental.pipeline_parallel_split_points
|
76 |
+
or generate_split_points(
|
77 |
+
job_config, parallel_dims.pp, model_config.num_hidden_layers
|
78 |
+
)
|
79 |
+
)
|
80 |
+
|
81 |
+
def _build_stage(
|
82 |
+
stage_idx: int,
|
83 |
+
start_layer: Optional[str],
|
84 |
+
stop_layer: Optional[str],
|
85 |
+
is_first: bool = False,
|
86 |
+
is_last: bool = False,
|
87 |
+
) -> tuple[PipelineStage, nn.Module]:
|
88 |
+
model = copy.deepcopy(whole_model)
|
89 |
+
if not is_first:
|
90 |
+
# we do `model.tok_embeddings = None` here
|
91 |
+
real_model = get_model(model)
|
92 |
+
tok_embeddings_name = get_components_name(real_model, "tok_embeddings")
|
93 |
+
setattr(real_model, tok_embeddings_name, None)
|
94 |
+
|
95 |
+
drop_layers = start_layer is not None
|
96 |
+
# Get module dictionary from get_blocks(model)
|
97 |
+
# and Create a list of keys before modifying dictionary
|
98 |
+
module_dict = get_blocks(model)._modules # Store reference
|
99 |
+
layer_names = list(module_dict.keys())
|
100 |
+
|
101 |
+
# Iterate over the list of keys instead of `_modules.items()`
|
102 |
+
for name in layer_names:
|
103 |
+
# Dynamically determine prefix (blocks.* or layers.*)
|
104 |
+
prefix = start_layer.split(".")[0] if start_layer else "layers"
|
105 |
+
layer_name = f"{prefix}.{name}" # Construct the correct name format
|
106 |
+
|
107 |
+
# Ensure `drop_layers` activation is based on actual naming
|
108 |
+
if layer_name == start_layer:
|
109 |
+
drop_layers = False
|
110 |
+
if layer_name == stop_layer:
|
111 |
+
drop_layers = True
|
112 |
+
|
113 |
+
# Delete layer if drop_layers is active
|
114 |
+
if drop_layers:
|
115 |
+
del module_dict[name] # Safe deletion from stored dictionary
|
116 |
+
|
117 |
+
if not is_last:
|
118 |
+
# we do `model.norm = None` and `model.output = None`
|
119 |
+
real_model = get_model(model)
|
120 |
+
norm_name = get_components_name(real_model, "norm")
|
121 |
+
setattr(real_model, norm_name, None)
|
122 |
+
|
123 |
+
head_name = get_components_name(model, "lm_head")
|
124 |
+
setattr(model, head_name, None)
|
125 |
+
|
126 |
+
stage = PipelineStage(
|
127 |
+
model,
|
128 |
+
stage_idx,
|
129 |
+
num_stages,
|
130 |
+
device,
|
131 |
+
group=pp_mesh.get_group("pp"),
|
132 |
+
)
|
133 |
+
return stage, model
|
134 |
+
|
135 |
+
num_stages = len(splits) + 1
|
136 |
+
stage_idx = pp_rank
|
137 |
+
|
138 |
+
stages = []
|
139 |
+
models = []
|
140 |
+
|
141 |
+
schedule_class = get_schedule_class(
|
142 |
+
job_config.experimental.pipeline_parallel_schedule
|
143 |
+
)
|
144 |
+
style = "v" if schedule_class == ScheduleZBVZeroBubble else "loop"
|
145 |
+
|
146 |
+
for stage_idx in stage_ids_this_rank(pp_rank, pp_size, num_stages, style=style):
|
147 |
+
start_layer = splits[stage_idx - 1] if stage_idx > 0 else None
|
148 |
+
stop_layer = splits[stage_idx] if stage_idx < num_stages - 1 else None
|
149 |
+
stage, model_chunk = _build_stage(
|
150 |
+
stage_idx,
|
151 |
+
start_layer,
|
152 |
+
stop_layer,
|
153 |
+
is_first=stage_idx == 0,
|
154 |
+
is_last=stage_idx == num_stages - 1,
|
155 |
+
)
|
156 |
+
logger.info(
|
157 |
+
f"PP rank {pp_rank} is building stage_idx {stage_idx}"
|
158 |
+
f" with start_layer {start_layer}, stop_layer {stop_layer}"
|
159 |
+
)
|
160 |
+
stages.append(stage)
|
161 |
+
models.append(model_chunk)
|
162 |
+
return stages, models
|
flame/tools/__init__.py
ADDED
File without changes
|
flame/tools/utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from torch import nn
|
8 |
+
from torchtitan.tools.logging import logger
|
9 |
+
|
10 |
+
|
11 |
+
def get_nparams_and_flops(model: nn.Module, model_config, seq_len: int) -> tuple[int, int]:
|
12 |
+
nparams = sum(p.numel() for p in model.parameters())
|
13 |
+
nparams_embedding = sum(
|
14 |
+
sum(p.numel() for p in m.parameters())
|
15 |
+
for m in model.children()
|
16 |
+
if isinstance(m, nn.Embedding)
|
17 |
+
)
|
18 |
+
|
19 |
+
if hasattr(model_config, "num_heads"):
|
20 |
+
num_heads = model_config.num_heads
|
21 |
+
elif hasattr(model_config, "num_attention_heads"):
|
22 |
+
num_heads = model_config.num_attention_heads
|
23 |
+
else:
|
24 |
+
num_heads = 1
|
25 |
+
logger.warning("num_heads not found in model_config, defaulting to 1. ")
|
26 |
+
|
27 |
+
l, h, q, t = (
|
28 |
+
model_config.num_hidden_layers,
|
29 |
+
num_heads,
|
30 |
+
model_config.hidden_size // num_heads,
|
31 |
+
seq_len,
|
32 |
+
)
|
33 |
+
# Reasoning behind the factor of 12 for the self-attention part of the formula:
|
34 |
+
# 1. each self-attention has 2 matmul in the forward and 4 in the backward (6)
|
35 |
+
# 2. the flash attention does 1 more matmul recomputation in the backward
|
36 |
+
# but recomputation should not be counted in calculating MFU (+0)
|
37 |
+
# 3. each matmul performs 1 multiplication and 1 addition (*2)
|
38 |
+
# 4. we follow the convention and do not account for sparsity in causal attention
|
39 |
+
num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t
|
40 |
+
|
41 |
+
return nparams, num_flops_per_token
|
flame/train.py
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import time
|
10 |
+
from datetime import timedelta
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from datasets import interleave_datasets, load_dataset
|
14 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
15 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
16 |
+
|
17 |
+
import fla # noqa
|
18 |
+
from fla.modules.fused_linear_cross_entropy import FusedLinearCrossEntropyLoss
|
19 |
+
from fla.ops.common.utils import prepare_position_ids
|
20 |
+
from flame.components.checkpoint import TrainState
|
21 |
+
from flame.config_manager import JobConfig
|
22 |
+
from flame.data import build_dataloader, shuffle
|
23 |
+
from flame.models.parallelize_fla import parallelize_fla
|
24 |
+
from flame.models.pipeline_fla import pipeline_fla
|
25 |
+
from flame.tools.utils import get_nparams_and_flops
|
26 |
+
from flame.utils.checkpoint import cleanup_local_checkpoints
|
27 |
+
from flame.utils.convert_dcp_to_hf import save_pretrained
|
28 |
+
from flame.utils.hf_utils import upload_checkpoint_to_hf
|
29 |
+
from datetime import datetime
|
30 |
+
from torchtitan.components.checkpoint import CheckpointManager
|
31 |
+
from torchtitan.components.ft import FTParallelDims, init_ft_manager
|
32 |
+
from torchtitan.components.loss import build_cross_entropy_loss
|
33 |
+
from torchtitan.components.lr_scheduler import build_lr_schedulers
|
34 |
+
from torchtitan.components.metrics import build_device_memory_monitor, build_metrics_processor, ensure_pp_loss_visible
|
35 |
+
from torchtitan.components.optimizer import build_optimizers
|
36 |
+
from torchtitan.distributed import ParallelDims
|
37 |
+
from torchtitan.distributed import utils as dist_utils
|
38 |
+
from torchtitan.protocols.model_converter import build_model_converters
|
39 |
+
from torchtitan.protocols.train_spec import TrainSpec, get_train_spec, register_train_spec
|
40 |
+
from torchtitan.tools import utils
|
41 |
+
from torchtitan.tools.logging import init_logger, logger
|
42 |
+
from torchtitan.tools.profiling import maybe_enable_memory_snapshot, maybe_enable_profiling
|
43 |
+
|
44 |
+
|
45 |
+
def build_tokenizer(job_config: JobConfig) -> AutoTokenizer:
|
46 |
+
return AutoTokenizer.from_pretrained(job_config.model.tokenizer_path)
|
47 |
+
|
48 |
+
|
49 |
+
register_train_spec(
|
50 |
+
TrainSpec(
|
51 |
+
name="fla",
|
52 |
+
cls=AutoModelForCausalLM,
|
53 |
+
config=AutoConfig,
|
54 |
+
parallelize_fn=parallelize_fla,
|
55 |
+
pipelining_fn=pipeline_fla,
|
56 |
+
build_optimizers_fn=build_optimizers,
|
57 |
+
build_lr_schedulers_fn=build_lr_schedulers,
|
58 |
+
build_dataloader_fn=build_dataloader,
|
59 |
+
build_tokenizer_fn=build_tokenizer,
|
60 |
+
build_loss_fn=build_cross_entropy_loss,
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
|
66 |
+
@record
|
67 |
+
def main(job_config: JobConfig):
|
68 |
+
logger.info(f"Starting job: {job_config.job.description}")
|
69 |
+
|
70 |
+
if job_config.experimental.custom_model_path:
|
71 |
+
utils.import_module_from_path(job_config.experimental.custom_model_path)
|
72 |
+
|
73 |
+
# used for colorful printing
|
74 |
+
color = utils.NoColor if job_config.metrics.disable_color_printing else utils.Color
|
75 |
+
|
76 |
+
if job_config.job.print_args:
|
77 |
+
logger.info(
|
78 |
+
f"{color.green}{json.dumps(job_config.to_dict(), indent=2, sort_keys=True)}{color.reset}"
|
79 |
+
)
|
80 |
+
|
81 |
+
# take control of garbage collection to avoid stragglers
|
82 |
+
gc_handler = utils.GarbageCollection(gc_freq=job_config.training.gc_freq)
|
83 |
+
|
84 |
+
device_module, device_type = utils.device_module, utils.device_type
|
85 |
+
device = torch.device(f"{device_type}:{int(os.environ['LOCAL_RANK'])}")
|
86 |
+
# Device has to be set before creating TorchFT manager.
|
87 |
+
device_module.set_device(device)
|
88 |
+
ft_manager = init_ft_manager(job_config)
|
89 |
+
|
90 |
+
run_specific_repo_id = None
|
91 |
+
if getattr(job_config.checkpoint, "hf_upload_enabled", False):
|
92 |
+
hf_repo_base = getattr(job_config.checkpoint, "hf_repo_base_name", None)
|
93 |
+
if hf_repo_base:
|
94 |
+
# Generate timestamp (adjust format if desired)
|
95 |
+
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
|
96 |
+
run_specific_repo_id = f"{hf_repo_base}-{timestamp}"
|
97 |
+
logger.info(f"Target Hugging Face repository for this run: {run_specific_repo_id}")
|
98 |
+
else:
|
99 |
+
logger.warning("HF Hub upload enabled, but 'checkpoint.hf_repo_base_name' is not set.")
|
100 |
+
# Disable upload if base name is missing
|
101 |
+
job_config.checkpoint.hf_upload_enabled = False
|
102 |
+
|
103 |
+
# init distributed
|
104 |
+
world_size = int(os.environ["WORLD_SIZE"])
|
105 |
+
if not ft_manager.enabled:
|
106 |
+
parallel_dims = ParallelDims(
|
107 |
+
dp_shard=job_config.training.data_parallel_shard_degree,
|
108 |
+
dp_replicate=job_config.training.data_parallel_replicate_degree,
|
109 |
+
cp=job_config.experimental.context_parallel_degree,
|
110 |
+
tp=job_config.training.tensor_parallel_degree,
|
111 |
+
pp=job_config.experimental.pipeline_parallel_degree,
|
112 |
+
world_size=world_size,
|
113 |
+
enable_loss_parallel=not job_config.training.disable_loss_parallel,
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
parallel_dims = FTParallelDims(
|
117 |
+
dp_shard=job_config.training.data_parallel_shard_degree,
|
118 |
+
dp_replicate=job_config.training.data_parallel_replicate_degree,
|
119 |
+
cp=job_config.experimental.context_parallel_degree,
|
120 |
+
tp=job_config.training.tensor_parallel_degree,
|
121 |
+
pp=job_config.experimental.pipeline_parallel_degree,
|
122 |
+
world_size=world_size,
|
123 |
+
enable_loss_parallel=not job_config.training.disable_loss_parallel,
|
124 |
+
ft_manager=ft_manager,
|
125 |
+
)
|
126 |
+
dist_utils.init_distributed(job_config)
|
127 |
+
# initialize device memory monitor and get peak flops for MFU calculation
|
128 |
+
device_memory_monitor = build_device_memory_monitor()
|
129 |
+
gpu_peak_flops = utils.get_peak_flops(device_memory_monitor.device_name)
|
130 |
+
logger.info(f"Peak FLOPS used for computing MFU: {gpu_peak_flops:.3e}")
|
131 |
+
|
132 |
+
# build meshes
|
133 |
+
world_mesh = parallel_dims.build_mesh(device_type=device_type)
|
134 |
+
if parallel_dims.dp_enabled:
|
135 |
+
dp_mesh = world_mesh["dp"]
|
136 |
+
dp_degree, dp_rank = dp_mesh.size(), dp_mesh.get_local_rank()
|
137 |
+
else:
|
138 |
+
dp_degree, dp_rank = 1, 0
|
139 |
+
|
140 |
+
if parallel_dims.pp_enabled:
|
141 |
+
raise NotImplementedError(
|
142 |
+
"Pipeline parallelism is not supported in this version"
|
143 |
+
)
|
144 |
+
"""
|
145 |
+
! TODO[flame]: We need to fix the pipeline parallelism for flame
|
146 |
+
[x] Match the key of models' components with the actual naming
|
147 |
+
[ ] Fix the post-init and tie-embedding for pipeline parallelism, HF's transformer automatically
|
148 |
+
forces to tie if head is None, we need to handle this case
|
149 |
+
[ ]
|
150 |
+
"""
|
151 |
+
pp_mesh = world_mesh["pp"]
|
152 |
+
|
153 |
+
# Set random seed, and maybe enable deterministic mode (mainly for debugging, expect perf loss)
|
154 |
+
dist_utils.set_determinism(
|
155 |
+
world_mesh, device, job_config.training.seed, job_config.training.deterministic
|
156 |
+
)
|
157 |
+
train_spec = get_train_spec(job_config.model.name)
|
158 |
+
|
159 |
+
logger.info("Loading tokenizer...")
|
160 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
161 |
+
job_config.model.tokenizer_path,
|
162 |
+
trust_remote_code=True,
|
163 |
+
model_max_length=int(1e10),
|
164 |
+
)
|
165 |
+
logger.info(f"{tokenizer}")
|
166 |
+
logger.info(
|
167 |
+
f"Loading dataset {job_config.training.dataset}"
|
168 |
+
f":{job_config.training.dataset_name}"
|
169 |
+
if job_config.training.dataset_name is not None
|
170 |
+
else ""
|
171 |
+
)
|
172 |
+
|
173 |
+
min_num_shards = dp_degree * job_config.training.num_workers
|
174 |
+
if len(job_config.training.dataset.split(",")) == 1:
|
175 |
+
dataset = load_dataset(
|
176 |
+
path=job_config.training.dataset,
|
177 |
+
name=getattr(job_config.training, "dataset_name", None),
|
178 |
+
data_dir=getattr(job_config.training, "data_dir", None),
|
179 |
+
data_files=getattr(job_config.training, "data_files", None),
|
180 |
+
split=job_config.training.dataset_split or "train",
|
181 |
+
trust_remote_code=True,
|
182 |
+
streaming=job_config.training.streaming,
|
183 |
+
num_proc=(
|
184 |
+
job_config.training.num_workers
|
185 |
+
if not job_config.training.streaming
|
186 |
+
else None
|
187 |
+
),
|
188 |
+
)
|
189 |
+
logger.info(f"{dataset}")
|
190 |
+
|
191 |
+
logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
|
192 |
+
if not job_config.training.streaming:
|
193 |
+
# the states of map-style dataset is recoverable after shuffling
|
194 |
+
dataset = dataset.shuffle(
|
195 |
+
seed=job_config.training.seed
|
196 |
+
).to_iterable_dataset(num_shards=min_num_shards)
|
197 |
+
else:
|
198 |
+
if dataset.num_shards < min_num_shards:
|
199 |
+
logger.warning(
|
200 |
+
f"{color.red}"
|
201 |
+
f"Dataset {job_config.training.dataset} has insufficient shards ({dataset.num_shards}). "
|
202 |
+
f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
|
203 |
+
f"{job_config.training.num_workers} dataloader workers. "
|
204 |
+
f"Disabling the streaming mode and resharding dataset to {min_num_shards} shards."
|
205 |
+
f"{color.reset}"
|
206 |
+
)
|
207 |
+
dataset = (
|
208 |
+
load_dataset(
|
209 |
+
path=job_config.training.dataset,
|
210 |
+
name=getattr(job_config.training, "dataset_name", None),
|
211 |
+
data_dir=getattr(job_config.training, "data_dir", None),
|
212 |
+
data_files=getattr(job_config.training, "data_files", None),
|
213 |
+
split=job_config.training.dataset_split or "train",
|
214 |
+
trust_remote_code=True,
|
215 |
+
streaming=False,
|
216 |
+
num_proc=job_config.training.num_workers,
|
217 |
+
)
|
218 |
+
.shuffle(seed=job_config.training.seed)
|
219 |
+
.to_iterable_dataset(num_shards=min_num_shards)
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
dataset = shuffle(dataset, seed=job_config.training.seed)
|
223 |
+
else:
|
224 |
+
datasets = job_config.training.dataset.split(",")
|
225 |
+
if job_config.training.dataset_name is not None:
|
226 |
+
dataset_names = [
|
227 |
+
name or None for name in job_config.training.dataset_name.split(",")
|
228 |
+
]
|
229 |
+
assert len(dataset_names) == len(datasets), (
|
230 |
+
"The number of dataset names must match the number of datasets"
|
231 |
+
)
|
232 |
+
else:
|
233 |
+
dataset_names = [None] * len(datasets)
|
234 |
+
if job_config.training.dataset_split is not None:
|
235 |
+
dataset_splits = [
|
236 |
+
split or "train"
|
237 |
+
for split in job_config.training.dataset_split.split(",")
|
238 |
+
]
|
239 |
+
assert len(dataset_splits) == len(datasets), (
|
240 |
+
"The number of dataset splits must match the number of datasets"
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
dataset_splits = ["train"] * len(datasets)
|
244 |
+
if job_config.training.data_dir is not None:
|
245 |
+
data_dirs = [
|
246 |
+
data_dir or None for data_dir in job_config.training.data_dir.split(",")
|
247 |
+
]
|
248 |
+
assert len(data_dirs) == len(datasets), (
|
249 |
+
"The number of data dirs must match the number of datasets"
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
data_dirs = [None] * len(datasets)
|
253 |
+
if job_config.training.data_files is not None:
|
254 |
+
data_files = job_config.training.data_files.split(",")
|
255 |
+
assert len(data_files) == len(datasets), (
|
256 |
+
"The number of data files must match the number of datasets"
|
257 |
+
)
|
258 |
+
else:
|
259 |
+
data_files = [None] * len(datasets)
|
260 |
+
if job_config.training.data_probs is not None:
|
261 |
+
data_probs = [float(p) for p in job_config.training.data_probs.split(",")]
|
262 |
+
assert len(data_probs) == len(datasets), (
|
263 |
+
"The number of data probabilities must match the number of datasets"
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
raise ValueError(
|
267 |
+
"Data sampling probabilities are required if using multiple datasets"
|
268 |
+
)
|
269 |
+
|
270 |
+
subsets = []
|
271 |
+
for i, prob in enumerate(data_probs):
|
272 |
+
subset = load_dataset(
|
273 |
+
path=datasets[i],
|
274 |
+
name=dataset_names[i],
|
275 |
+
data_dir=data_dirs[i],
|
276 |
+
data_files=data_files[i],
|
277 |
+
split=dataset_splits[i],
|
278 |
+
trust_remote_code=True,
|
279 |
+
streaming=job_config.training.streaming,
|
280 |
+
num_proc=(
|
281 |
+
job_config.training.num_workers
|
282 |
+
if not job_config.training.streaming
|
283 |
+
else None
|
284 |
+
),
|
285 |
+
)
|
286 |
+
logger.info(
|
287 |
+
f"Subset {color.cyan}{datasets[i]}"
|
288 |
+
+ (f":{dataset_names[i]} " if dataset_names[i] else " ")
|
289 |
+
+ f"(p = {prob:.3f}){color.reset}:\n"
|
290 |
+
+ f"{subset}"
|
291 |
+
)
|
292 |
+
|
293 |
+
logger.info(f"Shuffling the dataset with seed {job_config.training.seed}")
|
294 |
+
if not job_config.training.streaming:
|
295 |
+
# the states of map-style dataset is recoverable after shuffling
|
296 |
+
subset = subset.shuffle(
|
297 |
+
seed=job_config.training.seed
|
298 |
+
).to_iterable_dataset(num_shards=min_num_shards)
|
299 |
+
else:
|
300 |
+
if subset.num_shards < min_num_shards:
|
301 |
+
logger.warning(
|
302 |
+
f"{color.red}"
|
303 |
+
f"Dataset {datasets[i]} has insufficient shards ({subset.num_shards}). "
|
304 |
+
f"Need {min_num_shards} shards minimum for {dp_degree} data parallel workers × "
|
305 |
+
f"{job_config.training.num_workers} dataloader workers. "
|
306 |
+
f"Resharding dataset to {min_num_shards} shards and disabling streaming mode."
|
307 |
+
f"{color.reset}"
|
308 |
+
)
|
309 |
+
# again, it's ok to directly shuffle the map-style dataset
|
310 |
+
# we expect an error raised if the map-style dataset still has not enough data shards
|
311 |
+
subset = (
|
312 |
+
load_dataset(
|
313 |
+
path=datasets[i],
|
314 |
+
name=dataset_names[i],
|
315 |
+
data_dir=data_dirs[i],
|
316 |
+
data_files=data_files[i],
|
317 |
+
split=dataset_splits[i],
|
318 |
+
trust_remote_code=True,
|
319 |
+
streaming=False,
|
320 |
+
num_proc=job_config.training.num_workers,
|
321 |
+
)
|
322 |
+
.shuffle(seed=job_config.training.seed)
|
323 |
+
.to_iterable_dataset(min_num_shards)
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
# we set relatively small buffer size here as interleaving could provide some randomness
|
327 |
+
subset = shuffle(
|
328 |
+
subset,
|
329 |
+
seed=job_config.training.seed,
|
330 |
+
buffer_size=max(128, 1024 // len(datasets)),
|
331 |
+
)
|
332 |
+
|
333 |
+
if "text" in subset.column_names:
|
334 |
+
subset = subset.select_columns("text")
|
335 |
+
elif "content" in subset.column_names:
|
336 |
+
subset = subset.select_columns("content")
|
337 |
+
else:
|
338 |
+
raise ValueError(
|
339 |
+
f"Subset {datasets[i]} has no 'text' or 'content' column"
|
340 |
+
)
|
341 |
+
subsets.append(subset)
|
342 |
+
|
343 |
+
logger.info(
|
344 |
+
f"Interleaving {len(subsets)} datasets with probabilities {data_probs}"
|
345 |
+
)
|
346 |
+
dataset = interleave_datasets(
|
347 |
+
datasets=subsets,
|
348 |
+
probabilities=data_probs,
|
349 |
+
stopping_strategy="all_exhausted",
|
350 |
+
seed=job_config.training.seed,
|
351 |
+
)
|
352 |
+
logger.info(f"{dataset}")
|
353 |
+
|
354 |
+
logger.info("Building dataloader...")
|
355 |
+
dataloader = build_dataloader(
|
356 |
+
dataset=dataset,
|
357 |
+
tokenizer=tokenizer,
|
358 |
+
rank=dp_rank,
|
359 |
+
world_size=dp_degree,
|
360 |
+
batch_size=job_config.training.batch_size,
|
361 |
+
seq_len=job_config.training.seq_len,
|
362 |
+
context_len=job_config.training.context_len,
|
363 |
+
varlen=job_config.training.varlen,
|
364 |
+
num_workers=job_config.training.num_workers,
|
365 |
+
pin_memory=job_config.training.pin_memory,
|
366 |
+
persistent_workers=job_config.training.persistent_workers,
|
367 |
+
snapshot_every_n_steps=job_config.checkpoint.interval,
|
368 |
+
)
|
369 |
+
|
370 |
+
logger.info(f"Loading model config from {job_config.model.config}")
|
371 |
+
model_config = AutoConfig.from_pretrained(job_config.model.config)
|
372 |
+
# set the model configs from training inputs:
|
373 |
+
# 1. norm type to decide which norm layer to use
|
374 |
+
# 2. disable fused norm if TP is enabled
|
375 |
+
# 3. vocab size from tokenizer
|
376 |
+
# 4. context_len base on inputs
|
377 |
+
if parallel_dims.tp_enabled:
|
378 |
+
if model_config.fuse_norm:
|
379 |
+
logger.warning(
|
380 |
+
f"{color.red}"
|
381 |
+
f"Fused norm is not compatible with tensor parallelism. "
|
382 |
+
f"Disabling it for now."
|
383 |
+
f"{color.reset}"
|
384 |
+
)
|
385 |
+
model_config.fuse_norm = False
|
386 |
+
if parallel_dims.loss_parallel_enabled:
|
387 |
+
if model_config.fuse_cross_entropy:
|
388 |
+
logger.warning(
|
389 |
+
f"{color.red}"
|
390 |
+
f"Loss parallel enabled. Disabling fused cross entropy for now."
|
391 |
+
f"{color.reset}"
|
392 |
+
)
|
393 |
+
model_config.fuse_cross_entropy = False
|
394 |
+
model_config.vocab_size = max(tokenizer.vocab_size, model_config.vocab_size)
|
395 |
+
|
396 |
+
logger.info(
|
397 |
+
f"Building model from the config\n{color.green}{model_config}{color.reset}"
|
398 |
+
)
|
399 |
+
with torch.device("meta"):
|
400 |
+
model = AutoModelForCausalLM.from_config(model_config)
|
401 |
+
if (
|
402 |
+
getattr(model_config, "fuse_cross_entropy", False)
|
403 |
+
and FusedLinearCrossEntropyLoss is not None
|
404 |
+
):
|
405 |
+
model.criterion = FusedLinearCrossEntropyLoss(
|
406 |
+
num_chunks=8 // parallel_dims.tp
|
407 |
+
)
|
408 |
+
# defer weight initialization until after parallelisms are applied
|
409 |
+
model.apply(lambda m: setattr(m, "_is_hf_initialized", False))
|
410 |
+
logger.info(f"{color.blue}\n{model}{color.reset}\n")
|
411 |
+
|
412 |
+
# Build the collection of model converters. No-op if `model.converters` empty
|
413 |
+
model_converters = build_model_converters(job_config, parallel_dims)
|
414 |
+
model_converters.convert(model)
|
415 |
+
|
416 |
+
# calculate model size and flops per token
|
417 |
+
model_param_count, num_flops_per_token = get_nparams_and_flops(
|
418 |
+
model, model_config, job_config.training.context_len
|
419 |
+
)
|
420 |
+
|
421 |
+
# move sharded model to CPU/GPU and initialize weights via DTensor
|
422 |
+
if job_config.checkpoint.create_seed_checkpoint:
|
423 |
+
init_device = "cpu"
|
424 |
+
elif job_config.training.enable_cpu_offload:
|
425 |
+
init_device = "cpu"
|
426 |
+
else:
|
427 |
+
init_device = device_type
|
428 |
+
|
429 |
+
# apply parallelisms and initialization
|
430 |
+
if parallel_dims.pp_enabled:
|
431 |
+
# apply PT-D Pipeline Parallel
|
432 |
+
(
|
433 |
+
pp_schedule,
|
434 |
+
model_parts,
|
435 |
+
has_first_stage,
|
436 |
+
has_last_stage,
|
437 |
+
) = train_spec.pipelining_fn(
|
438 |
+
model,
|
439 |
+
pp_mesh,
|
440 |
+
parallel_dims,
|
441 |
+
job_config,
|
442 |
+
device,
|
443 |
+
model_config,
|
444 |
+
train_spec.loss_fn,
|
445 |
+
)
|
446 |
+
# when PP is enabled, `model` obj is no longer used after this point, model_parts is used instead
|
447 |
+
del model
|
448 |
+
|
449 |
+
# For PP with looped schedules, each item in model_parts is one stage-model-chunk.
|
450 |
+
# We need to iterate through model_parts to apply SPMD parallelisms, compilation,
|
451 |
+
# optimizer, and checkpointing
|
452 |
+
for m in model_parts:
|
453 |
+
# apply SPMD-style PT-D techniques
|
454 |
+
train_spec.parallelize_fn(m, world_mesh, parallel_dims, job_config)
|
455 |
+
m.to_empty(device=init_device)
|
456 |
+
with torch.no_grad():
|
457 |
+
m.post_init()
|
458 |
+
m.train()
|
459 |
+
|
460 |
+
# confirm that user will be able to view loss metrics on the console
|
461 |
+
ensure_pp_loss_visible(parallel_dims, job_config, color)
|
462 |
+
else:
|
463 |
+
# apply PT-D Tensor Parallel, activation checkpointing, torch.compile, Data Parallel
|
464 |
+
train_spec.parallelize_fn(model, world_mesh, parallel_dims, job_config)
|
465 |
+
model.to_empty(device=init_device)
|
466 |
+
with torch.no_grad():
|
467 |
+
model.post_init()
|
468 |
+
model.train()
|
469 |
+
|
470 |
+
model_parts = [model]
|
471 |
+
|
472 |
+
device_mem_stats = device_memory_monitor.get_peak_stats()
|
473 |
+
logger.info(
|
474 |
+
f"{device_type.upper()} memory usage for model: "
|
475 |
+
f"{device_mem_stats.max_reserved_gib:.2f}GiB"
|
476 |
+
f"({device_mem_stats.max_reserved_pct:.2f}%)"
|
477 |
+
)
|
478 |
+
|
479 |
+
# build optimizer after applying parallelisms to the model
|
480 |
+
optimizers = train_spec.build_optimizers_fn(model_parts, job_config, ft_manager)
|
481 |
+
lr_schedulers = train_spec.build_lr_schedulers_fn(optimizers, job_config)
|
482 |
+
# Post optimizer step model converters hook.
|
483 |
+
# e.g. calculate float8 dynamic amax/scale for all-parameter for FSDP2
|
484 |
+
# where it issues a single all-reduce for all parameters at once for better performance
|
485 |
+
optimizers.register_step_post_hook(
|
486 |
+
lambda *args, **kwargs: model_converters.post_optimizer_hook(model_parts)
|
487 |
+
)
|
488 |
+
|
489 |
+
train_state = TrainState()
|
490 |
+
|
491 |
+
# load initial checkpoint
|
492 |
+
checkpoint = CheckpointManager(
|
493 |
+
dataloader=dataloader,
|
494 |
+
model_parts=model_parts,
|
495 |
+
optimizers=optimizers,
|
496 |
+
lr_schedulers=lr_schedulers,
|
497 |
+
states={"train_state": train_state},
|
498 |
+
job_config=job_config,
|
499 |
+
ft_manager=ft_manager,
|
500 |
+
)
|
501 |
+
|
502 |
+
if job_config.checkpoint.create_seed_checkpoint:
|
503 |
+
assert world_size == 1, (
|
504 |
+
"Must create seed checkpoint using a single device, to disable sharding"
|
505 |
+
)
|
506 |
+
assert job_config.checkpoint.enable_checkpoint, (
|
507 |
+
"Must enable checkpointing when creating a seed checkpoint"
|
508 |
+
)
|
509 |
+
checkpoint.save(curr_step=0, force=True)
|
510 |
+
logger.info("Created seed checkpoint")
|
511 |
+
return
|
512 |
+
|
513 |
+
checkpoint.load(step=job_config.checkpoint.load_step)
|
514 |
+
metric_logger = build_metrics_processor(job_config, parallel_dims)
|
515 |
+
# Set dependent attributes for metric_logger
|
516 |
+
metric_logger.num_flops_per_token = num_flops_per_token
|
517 |
+
metric_logger.optimizers = optimizers # Pass optimizers if needed by logger logic
|
518 |
+
metric_logger.lr_schedulers = (
|
519 |
+
lr_schedulers # Pass schedulers if needed by logger logic
|
520 |
+
)
|
521 |
+
|
522 |
+
# plot losses loaded from checkpoint (if any) to TensorBoard
|
523 |
+
# NOTE: Loss info after the last log step before checkpoint saving will not be ploted.
|
524 |
+
# This can be avoided by setting checkpoint.interval to be a multiple of metrics.log_freq
|
525 |
+
if train_state.step > 0 and len(metric_logger.data_loading_times) > 0:
|
526 |
+
for idx, step in enumerate(train_state.log_steps):
|
527 |
+
metric_logger.log(
|
528 |
+
step,
|
529 |
+
global_avg_loss=train_state.global_avg_losses[idx],
|
530 |
+
global_max_loss=train_state.global_max_losses[idx],
|
531 |
+
)
|
532 |
+
|
533 |
+
data_iterator = iter(dataloader)
|
534 |
+
|
535 |
+
train_context = dist_utils.get_train_context(
|
536 |
+
parallel_dims.loss_parallel_enabled,
|
537 |
+
job_config.experimental.enable_compiled_autograd,
|
538 |
+
)
|
539 |
+
|
540 |
+
# variables used to keep info for metrics logging
|
541 |
+
device_memory_monitor.reset_peak_stats()
|
542 |
+
|
543 |
+
global_batch_size = (
|
544 |
+
job_config.training.batch_size
|
545 |
+
* dp_degree
|
546 |
+
* job_config.training.gradient_accumulation_steps
|
547 |
+
)
|
548 |
+
num_tokens_per_step = global_batch_size * job_config.training.seq_len
|
549 |
+
# train loop
|
550 |
+
logger.info(f"{color.red}***** Running training *****{color.reset}")
|
551 |
+
logger.info(f"{color.green} Training starts at step {train_state.step + 1}")
|
552 |
+
logger.info(
|
553 |
+
f"{color.green} Number of tokens per sequence = {job_config.training.seq_len:,}"
|
554 |
+
)
|
555 |
+
logger.info(
|
556 |
+
f"{color.green} Gradient Accumulation steps = {job_config.training.gradient_accumulation_steps}"
|
557 |
+
)
|
558 |
+
logger.info(
|
559 |
+
f"{color.green} Instantaneous batch size (per device) = {job_config.training.batch_size:,}"
|
560 |
+
)
|
561 |
+
logger.info(
|
562 |
+
f"{color.green} Global batch size (w. parallel, distributed & accumulation) = {global_batch_size:,}"
|
563 |
+
f" ({num_tokens_per_step:,} tokens)"
|
564 |
+
)
|
565 |
+
logger.info(
|
566 |
+
f"{color.green} Total optimization steps = {job_config.training.steps:,} "
|
567 |
+
f"({job_config.training.steps * num_tokens_per_step:,} tokens)"
|
568 |
+
)
|
569 |
+
logger.info(
|
570 |
+
f"{color.green} Warmup steps = {job_config.lr_scheduler.warmup_steps:,}"
|
571 |
+
f" ({job_config.lr_scheduler.warmup_steps * num_tokens_per_step:,} tokens)"
|
572 |
+
)
|
573 |
+
logger.info(
|
574 |
+
f"{color.green} Number of parameters = {model_param_count:,} {color.reset}"
|
575 |
+
)
|
576 |
+
|
577 |
+
with (
|
578 |
+
maybe_enable_profiling(
|
579 |
+
job_config, global_step=train_state.step
|
580 |
+
) as torch_profiler,
|
581 |
+
maybe_enable_memory_snapshot(
|
582 |
+
job_config, global_step=train_state.step
|
583 |
+
) as memory_profiler,
|
584 |
+
):
|
585 |
+
while train_state.step < job_config.training.steps:
|
586 |
+
train_state.step += 1
|
587 |
+
gc_handler.run(train_state.step)
|
588 |
+
|
589 |
+
optimizers.zero_grad()
|
590 |
+
|
591 |
+
losses = []
|
592 |
+
# do gradient accumulation if enabled
|
593 |
+
for _ in range(job_config.training.gradient_accumulation_steps):
|
594 |
+
# get batch
|
595 |
+
data_load_start = time.perf_counter()
|
596 |
+
batch = next(data_iterator)
|
597 |
+
input_ids, labels = batch["input_ids"], batch["labels"]
|
598 |
+
|
599 |
+
# Update metrics processor state before forward/backward
|
600 |
+
metric_logger.ntokens_since_last_log += labels.numel()
|
601 |
+
metric_logger.data_loading_times.append(
|
602 |
+
time.perf_counter() - data_load_start
|
603 |
+
)
|
604 |
+
|
605 |
+
input_ids = input_ids.to(device_type)
|
606 |
+
|
607 |
+
"""
|
608 |
+
TODO[flame]: We need to carefully handle the position_ids for TP/CP
|
609 |
+
Depending on the Models'PE, the position_ids might be different.
|
610 |
+
|
611 |
+
e.g. for TP
|
612 |
+
For RoPE, all ranks have the same position_ids. [FOR HF model]
|
613 |
+
For sinusoidal, each rank has the coresponding chunked position_ids. [FOR HF model]
|
614 |
+
|
615 |
+
e.g. for CP, [optional_context_parallel_ctx shoudl automatically distbute the position_ids]
|
616 |
+
Each rank has the coresponding chunked position_ids. [FOR All model]
|
617 |
+
|
618 |
+
"""
|
619 |
+
labels = labels.to(device_type)
|
620 |
+
cu_seqlens = (
|
621 |
+
batch["cu_seqlens"].to(device_type)
|
622 |
+
if "cu_seqlens" in batch
|
623 |
+
else None
|
624 |
+
)
|
625 |
+
if cu_seqlens is not None:
|
626 |
+
position_ids = prepare_position_ids(cu_seqlens).to(torch.int32)
|
627 |
+
else:
|
628 |
+
position_ids = (
|
629 |
+
torch.arange(0, input_ids.shape[1], device=device_type)
|
630 |
+
.repeat(input_ids.shape[0], 1)
|
631 |
+
.to(torch.int32)
|
632 |
+
)
|
633 |
+
# apply context parallelism if cp is enabled
|
634 |
+
# ensure CP handles the separate freqs_cis buffer for each pp stage
|
635 |
+
optional_context_parallel_ctx = (
|
636 |
+
dist_utils.create_context_parallel_ctx(
|
637 |
+
cp_mesh=world_mesh["cp"],
|
638 |
+
cp_buffers=[input_ids, labels, position_ids],
|
639 |
+
cp_seq_dims=[1, 1, 1],
|
640 |
+
cp_no_restore_buffers={input_ids, labels, position_ids},
|
641 |
+
cp_rotate_method=job_config.experimental.context_parallel_rotate_method,
|
642 |
+
)
|
643 |
+
if parallel_dims.cp_enabled
|
644 |
+
else None
|
645 |
+
)
|
646 |
+
|
647 |
+
# #! TODO[flame], we should distribute the position_ids as well with CP
|
648 |
+
if parallel_dims.pp_enabled:
|
649 |
+
raise NotImplementedError(
|
650 |
+
"Pipeline parallelism is not supported in this version"
|
651 |
+
)
|
652 |
+
# Pipeline Parallel forward / backward inside step() call
|
653 |
+
with train_context(optional_context_parallel_ctx):
|
654 |
+
targets, losses = (
|
655 |
+
(labels, []) if has_last_stage else (None, None)
|
656 |
+
)
|
657 |
+
|
658 |
+
if has_first_stage:
|
659 |
+
pp_schedule.step(input_ids, target=targets, losses=losses)
|
660 |
+
else:
|
661 |
+
pp_schedule.step(target=targets, losses=losses)
|
662 |
+
|
663 |
+
# accumulate losses across pipeline microbatches
|
664 |
+
# TODO: PP+FSDP unexpectedly puts the loss back to the CPU
|
665 |
+
loss = (
|
666 |
+
torch.mean(torch.stack(losses)).to(device)
|
667 |
+
if has_last_stage
|
668 |
+
else torch.tensor([-1.0], device=device)
|
669 |
+
)
|
670 |
+
else:
|
671 |
+
# Non-PP forward / backward
|
672 |
+
with train_context(optional_context_parallel_ctx):
|
673 |
+
output = model(
|
674 |
+
input_ids=input_ids,
|
675 |
+
labels=labels,
|
676 |
+
position_ids=position_ids,
|
677 |
+
cu_seqlens=cu_seqlens,
|
678 |
+
)
|
679 |
+
loss = (
|
680 |
+
output.loss
|
681 |
+
/ job_config.training.gradient_accumulation_steps
|
682 |
+
)
|
683 |
+
loss.backward()
|
684 |
+
|
685 |
+
losses.append(loss)
|
686 |
+
loss = sum(losses)
|
687 |
+
|
688 |
+
# clip gradients
|
689 |
+
grad_norm = dist_utils.clip_grad_norm_(
|
690 |
+
[p for m in model_parts for p in m.parameters()],
|
691 |
+
job_config.training.max_norm,
|
692 |
+
foreach=True,
|
693 |
+
pp_mesh=pp_mesh if parallel_dims.pp_enabled else None,
|
694 |
+
)
|
695 |
+
|
696 |
+
# optimizer step
|
697 |
+
checkpoint.maybe_wait_for_staging()
|
698 |
+
if job_config.training.skip_nan_inf and (
|
699 |
+
grad_norm.isnan() or grad_norm.isinf()
|
700 |
+
):
|
701 |
+
logger.warning(
|
702 |
+
f"Skipping optimizer step - detected invalid gradient norm: {grad_norm:.4f}"
|
703 |
+
)
|
704 |
+
optimizers.zero_grad()
|
705 |
+
train_state.skipped_step += 1
|
706 |
+
else:
|
707 |
+
optimizers.step()
|
708 |
+
lr_schedulers.step()
|
709 |
+
|
710 |
+
# log metrics - Use MetricsProcessor
|
711 |
+
if metric_logger.should_log(train_state.step):
|
712 |
+
if (
|
713 |
+
parallel_dims.dp_replicate_enabled
|
714 |
+
or parallel_dims.dp_shard_enabled
|
715 |
+
or parallel_dims.cp_enabled
|
716 |
+
):
|
717 |
+
loss = loss.detach()
|
718 |
+
# Use dist_mean/max on the accumulated loss for the step
|
719 |
+
global_avg_loss, global_max_loss = (
|
720 |
+
dist_utils.dist_mean(
|
721 |
+
loss,
|
722 |
+
world_mesh["dp_cp"],
|
723 |
+
),
|
724 |
+
dist_utils.dist_max(
|
725 |
+
loss,
|
726 |
+
world_mesh["dp_cp"],
|
727 |
+
),
|
728 |
+
)
|
729 |
+
else:
|
730 |
+
# Scale back the loss before logging
|
731 |
+
global_avg_loss = global_max_loss = loss.item()
|
732 |
+
|
733 |
+
# Update train state tokens and elapsed time
|
734 |
+
time_now = time.perf_counter()
|
735 |
+
time_delta = (
|
736 |
+
time_now - metric_logger.time_last_log
|
737 |
+
) # Use metric_logger's time
|
738 |
+
train_state.token += (
|
739 |
+
metric_logger.ntokens_since_last_log # Use tokens tracked by metric_logger
|
740 |
+
* parallel_dims.world_size
|
741 |
+
/ parallel_dims.non_data_parallel_size
|
742 |
+
)
|
743 |
+
train_state.elapsed += timedelta(seconds=time_delta)
|
744 |
+
train_state.log_steps.append(train_state.step)
|
745 |
+
train_state.global_avg_losses.append(global_avg_loss)
|
746 |
+
train_state.global_max_losses.append(global_max_loss)
|
747 |
+
|
748 |
+
# Log using the metric processor
|
749 |
+
last_lr = lr_schedulers.schedulers[0].get_last_lr()[0]
|
750 |
+
eta = (
|
751 |
+
train_state.elapsed
|
752 |
+
* (job_config.training.steps - train_state.step)
|
753 |
+
/ train_state.step
|
754 |
+
)
|
755 |
+
metric_logger.log(
|
756 |
+
train_state.step,
|
757 |
+
global_avg_loss,
|
758 |
+
global_max_loss,
|
759 |
+
extra_metrics={
|
760 |
+
"optimizer/lr": last_lr,
|
761 |
+
"optimizer/grad_norm": grad_norm.item(),
|
762 |
+
"optimizer/skipped_step": train_state.skipped_step,
|
763 |
+
},
|
764 |
+
)
|
765 |
+
|
766 |
+
logger.info(
|
767 |
+
f"{color.blue}lr: {last_lr:.4e} gnorm: {grad_norm:5.2f} "
|
768 |
+
f"{color.magenta}[{str(train_state.elapsed).split('.')[0]:>8}<{str(eta).split('.')[0]:>8}]{color.reset}"
|
769 |
+
)
|
770 |
+
|
771 |
+
checkpoint.save(
|
772 |
+
train_state.step, force=(train_state.step == job_config.training.steps)
|
773 |
+
)
|
774 |
+
|
775 |
+
if torch.distributed.get_rank() == 0:
|
776 |
+
if job_config.checkpoint.enable_checkpoint:
|
777 |
+
hf_target_path = None
|
778 |
+
dcp_save_path = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder, f"step-{train_state.step}")
|
779 |
+
|
780 |
+
# TODO: Haven't tested this one yet
|
781 |
+
if getattr(job_config.checkpoint, "convert_to_hf_on_save", False):
|
782 |
+
try:
|
783 |
+
# Get the path where DCP was just saved
|
784 |
+
# Check CheckpointManager API for the best way, assuming get_save_path exists
|
785 |
+
hf_target_path = f"{dcp_save_path}" # e.g., .../checkpoint/step-1000-hf
|
786 |
+
|
787 |
+
logger.info(f"Converting step {train_state.step} DCP checkpoint to HF format at: {hf_target_path}")
|
788 |
+
save_pretrained( # Call the imported function
|
789 |
+
path=hf_target_path, # Pass target HF path as 'path'
|
790 |
+
step=train_state.step,
|
791 |
+
config=job_config.model.config, # Pass model config path/id
|
792 |
+
tokenizer=job_config.model.tokenizer_path # Pass tokenizer path/id
|
793 |
+
)
|
794 |
+
logger.info(f"Successfully converted step {train_state.step} to HF format.")
|
795 |
+
|
796 |
+
except Exception as e:
|
797 |
+
logger.error(f"Failed to convert checkpoint step {train_state.step} to HF format: {e}", exc_info=True)
|
798 |
+
|
799 |
+
base_checkpoint_dir = os.path.join(job_config.job.dump_folder, job_config.checkpoint.folder)
|
800 |
+
if getattr(job_config.checkpoint, "hf_upload_enabled", True):
|
801 |
+
upload_format = getattr(job_config.checkpoint, "hf_upload_format", "hf")
|
802 |
+
keep_k_hub = getattr(job_config.checkpoint, "hf_keep_latest_k", 5)
|
803 |
+
|
804 |
+
local_path_to_upload = None
|
805 |
+
if upload_format == "hf":
|
806 |
+
if hf_target_path and os.path.isdir(hf_target_path):
|
807 |
+
local_path_to_upload = hf_target_path
|
808 |
+
elif upload_format == "dcp":
|
809 |
+
if dcp_save_path and os.path.isdir(dcp_save_path):
|
810 |
+
local_path_to_upload = dcp_save_path
|
811 |
+
|
812 |
+
if local_path_to_upload:
|
813 |
+
try:
|
814 |
+
upload_checkpoint_to_hf(
|
815 |
+
local_path=local_path_to_upload,
|
816 |
+
step=train_state.step,
|
817 |
+
hf_repo_id_for_run=run_specific_repo_id,
|
818 |
+
upload_format=upload_format,
|
819 |
+
hf_keep_latest_k=job_config.checkpoint.keep_latest_k,
|
820 |
+
)
|
821 |
+
except Exception as e:
|
822 |
+
logger.error(f"Failed during HF Hub upload for step {train_state.step}: {e}", exc_info=True)
|
823 |
+
|
824 |
+
# signal the profiler that the next profiling step has started
|
825 |
+
if torch_profiler:
|
826 |
+
torch_profiler.step()
|
827 |
+
if memory_profiler:
|
828 |
+
memory_profiler.step()
|
829 |
+
|
830 |
+
# reduce timeout after first train step for faster signal
|
831 |
+
# (assuming lazy init and compilation are finished)
|
832 |
+
if train_state.step == 1:
|
833 |
+
dist_utils.set_pg_timeouts(
|
834 |
+
timeout=timedelta(seconds=job_config.comm.train_timeout_seconds),
|
835 |
+
world_mesh=world_mesh,
|
836 |
+
)
|
837 |
+
|
838 |
+
if torch.distributed.get_rank() == 0:
|
839 |
+
logger.info("Sleeping 2 seconds for other ranks to complete")
|
840 |
+
time.sleep(2)
|
841 |
+
|
842 |
+
metric_logger.close()
|
843 |
+
logger.info("Training completed")
|
844 |
+
|
845 |
+
|
846 |
+
if __name__ == "__main__":
|
847 |
+
init_logger()
|
848 |
+
config = JobConfig()
|
849 |
+
config.parse_args()
|
850 |
+
main(config)
|
851 |
+
torch.distributed.destroy_process_group()
|
flame/utils/__init__.py
ADDED
File without changes
|
flame/utils/checkpoint.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import re
|
4 |
+
import shutil
|
5 |
+
from torchtitan.tools.logging import logger
|
6 |
+
|
7 |
+
|
8 |
+
def cleanup_local_checkpoints(checkpoint_dir: str, keep_latest_k: int):
|
9 |
+
"""Removes older checkpoint directories locally, keeping only the latest k for both DCP and HF formats."""
|
10 |
+
if keep_latest_k <= 0:
|
11 |
+
return # Keep all checkpoints
|
12 |
+
|
13 |
+
logger.info(f"Cleaning up local checkpoints in {checkpoint_dir}, keeping latest {keep_latest_k}")
|
14 |
+
|
15 |
+
# Cleanup DCP checkpoints (step-*)
|
16 |
+
dcp_checkpoints = sorted(
|
17 |
+
glob.glob(os.path.join(checkpoint_dir, "step-*")),
|
18 |
+
key=lambda x: int(re.search(r"step-(\d+)", os.path.basename(x)).group(1)) if re.search(r"step-(\d+)", os.path.basename(x)) and not x.endswith("-hf") else -1,
|
19 |
+
reverse=True
|
20 |
+
)
|
21 |
+
# Filter out HF format directories
|
22 |
+
dcp_checkpoints = [d for d in dcp_checkpoints if not d.endswith("-hf")]
|
23 |
+
|
24 |
+
if len(dcp_checkpoints) > keep_latest_k:
|
25 |
+
checkpoints_to_delete = dcp_checkpoints[keep_latest_k:]
|
26 |
+
logger.info(f"Deleting {len(checkpoints_to_delete)} old DCP checkpoints: {[os.path.basename(c) for c in checkpoints_to_delete]}")
|
27 |
+
for ckpt_path in checkpoints_to_delete:
|
28 |
+
if os.path.isdir(ckpt_path): # Ensure it's a directory
|
29 |
+
try:
|
30 |
+
shutil.rmtree(ckpt_path)
|
31 |
+
except OSError as e:
|
32 |
+
logger.error(f"Error removing directory {ckpt_path}: {e}")
|
33 |
+
|
34 |
+
|
35 |
+
# Cleanup HF checkpoints (step-*-hf)
|
36 |
+
hf_checkpoints = sorted(
|
37 |
+
glob.glob(os.path.join(checkpoint_dir, "step-*-hf")),
|
38 |
+
key=lambda x: int(re.search(r"step-(\d+)-hf", os.path.basename(x)).group(1)) if re.search(r"step-(\d+)-hf", os.path.basename(x)) else -1,
|
39 |
+
reverse=True
|
40 |
+
)
|
41 |
+
|
42 |
+
if len(hf_checkpoints) > keep_latest_k:
|
43 |
+
checkpoints_to_delete = hf_checkpoints[keep_latest_k:]
|
44 |
+
logger.info(f"Deleting {len(checkpoints_to_delete)} old HF checkpoints: {[os.path.basename(c) for c in checkpoints_to_delete]}")
|
45 |
+
for ckpt_path in checkpoints_to_delete:
|
46 |
+
if os.path.isdir(ckpt_path): # Ensure it's a directory
|
47 |
+
try:
|
48 |
+
shutil.rmtree(ckpt_path)
|
49 |
+
except OSError as e:
|
50 |
+
logger.error(f"Error removing directory {ckpt_path}: {e}")
|
flame/utils/convert_dcp_to_hf.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
from datetime import timedelta
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.serialization
|
12 |
+
from torch.distributed.checkpoint.format_utils import dcp_to_torch_save
|
13 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
import fla # noqa
|
16 |
+
from torchtitan.tools.logging import init_logger, logger
|
17 |
+
|
18 |
+
|
19 |
+
@torch.inference_mode()
|
20 |
+
def save_pretrained(
|
21 |
+
path: str,
|
22 |
+
step: int,
|
23 |
+
config: str,
|
24 |
+
tokenizer: str
|
25 |
+
):
|
26 |
+
logger.info(f"Loading the config from {config}")
|
27 |
+
config = AutoConfig.from_pretrained(config, trust_remote_code=True)
|
28 |
+
|
29 |
+
logger.info(f"Saving the config to {path}")
|
30 |
+
config.save_pretrained(path)
|
31 |
+
logger.info(f"Loading the tokenizer from {tokenizer}")
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True)
|
33 |
+
logger.info(f"Saving the tokenizer to {path}")
|
34 |
+
tokenizer.save_pretrained(path)
|
35 |
+
|
36 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
37 |
+
# base_checkpoint_dir = os.path.dirname(path)
|
38 |
+
base_checkpoint_dir = path
|
39 |
+
checkpoint = os.path.join(base_checkpoint_dir, f'checkpoint/step-{step}')
|
40 |
+
checkpoint_path = os.path.join(tmpdir, 'checkpoint.pt')
|
41 |
+
logger.info(f"Saving the distributed checkpoint to {checkpoint_path}")
|
42 |
+
dcp_to_torch_save(checkpoint, checkpoint_path)
|
43 |
+
|
44 |
+
logger.info(f"Initializing the model from config\n{config}")
|
45 |
+
model = AutoModelForCausalLM.from_config(config)
|
46 |
+
logger.info(model)
|
47 |
+
logger.info("Loading state dict from the checkpoint")
|
48 |
+
|
49 |
+
# Add datetime.timedelta and io.BytesIO to safe globals
|
50 |
+
torch.serialization.add_safe_globals([timedelta, io.BytesIO])
|
51 |
+
# torch.load now with default weights_only=True will work
|
52 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu')['model'])
|
53 |
+
|
54 |
+
logger.info(f"Saving the model to {path}")
|
55 |
+
model.save_pretrained(path)
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
init_logger()
|
60 |
+
parser = argparse.ArgumentParser("Convert DCP format model weights to huggingface-style.")
|
61 |
+
parser.add_argument("--path", type=str, required=True)
|
62 |
+
parser.add_argument("--step", type=int, required=True)
|
63 |
+
parser.add_argument("--config", type=str, required=True)
|
64 |
+
parser.add_argument("--tokenizer", type=str, required=True)
|
65 |
+
args = parser.parse_args()
|
66 |
+
save_pretrained(args.path, args.step, args.config, args.tokenizer)
|
flame/utils/convert_hf_to_dcp.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.distributed.checkpoint as DCP
|
9 |
+
from transformers import AutoModelForCausalLM
|
10 |
+
|
11 |
+
import fla # noqa
|
12 |
+
from torchtitan.tools.logging import init_logger, logger
|
13 |
+
|
14 |
+
|
15 |
+
@torch.inference_mode()
|
16 |
+
def convert_hf_weights(model: str, checkpoint: str):
|
17 |
+
logger.info(f"Loading model from {model}")
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(model)
|
19 |
+
state_dict = model.state_dict()
|
20 |
+
|
21 |
+
logger.info(f"Writing to DCP at '{checkpoint}'")
|
22 |
+
checkpoint.mkdir(parents=True, exist_ok=True)
|
23 |
+
storage_writer = DCP.filesystem.FileSystemWriter(checkpoint, thread_count=8)
|
24 |
+
DCP.save({"model": state_dict}, storage_writer=storage_writer)
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
init_logger()
|
29 |
+
parser = argparse.ArgumentParser(description="Convert huggingface-style model weights to DCP format.")
|
30 |
+
parser.add_argument("--model", type=str, required=True)
|
31 |
+
parser.add_argument("--checkpoint", type=Path, required=True)
|
32 |
+
args = parser.parse_args()
|
33 |
+
|
34 |
+
convert_hf_weights(args.model, args.checkpoint)
|
flame/utils/hf_utils.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from huggingface_hub import HfApi, HfFolder, logging as hf_logging, create_repo
|
4 |
+
from torchtitan.tools.logging import logger
|
5 |
+
|
6 |
+
def upload_checkpoint_to_hf(
|
7 |
+
local_path: str,
|
8 |
+
step: int,
|
9 |
+
hf_repo_id_for_run: str,
|
10 |
+
hf_keep_latest_k: int,
|
11 |
+
upload_format: str
|
12 |
+
):
|
13 |
+
"""Uploads a checkpoint directory to HF Hub and manages retention."""
|
14 |
+
if not os.path.isdir(local_path):
|
15 |
+
logger.error(f"Local path for upload does not exist or is not a directory: {local_path}")
|
16 |
+
return
|
17 |
+
|
18 |
+
api = HfApi()
|
19 |
+
token = HfFolder.get_token()
|
20 |
+
if not token:
|
21 |
+
logger.warning("Hugging Face Hub token not found. Skipping upload. Login via `huggingface-cli login` or set HF_TOKEN.")
|
22 |
+
return
|
23 |
+
|
24 |
+
# --- Ensure the specific repository for this run exists ---
|
25 |
+
try:
|
26 |
+
logger.info(f"Ensuring repository {hf_repo_id_for_run} exists...")
|
27 |
+
# Use create_repo which handles creation only if it doesn't exist
|
28 |
+
create_repo(repo_id=hf_repo_id_for_run, token=token, repo_type="model", exist_ok=True)
|
29 |
+
logger.info(f"Repository {hf_repo_id_for_run} ensured.")
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Failed to create or ensure repository {hf_repo_id_for_run}: {e}", exc_info=True)
|
32 |
+
return # Stop if repo interaction fails
|
33 |
+
|
34 |
+
commit_message = f"Upload {upload_format.upper()} checkpoint step {step}"
|
35 |
+
path_in_repo = f"step-{step}"
|
36 |
+
|
37 |
+
logger.info(f"Uploading {local_path} to {hf_repo_id_for_run}/{path_in_repo} on Hugging Face Hub...")
|
38 |
+
try:
|
39 |
+
api.upload_folder(
|
40 |
+
folder_path=local_path,
|
41 |
+
path_in_repo=path_in_repo,
|
42 |
+
repo_id=hf_repo_id_for_run,
|
43 |
+
repo_type="model",
|
44 |
+
commit_message=commit_message,
|
45 |
+
token=token,
|
46 |
+
)
|
47 |
+
logger.info(f"Successfully uploaded step {step} to {hf_repo_id_for_run}.")
|
48 |
+
except Exception as e:
|
49 |
+
logger.error(f"Failed to upload checkpoint step {step} to {hf_repo_id_for_run}: {e}", exc_info=True)
|
50 |
+
if hf_keep_latest_k > 0:
|
51 |
+
logger.info(f"Cleaning up old checkpoints on {hf_repo_id_for_run}, keeping latest {hf_keep_latest_k}")
|
52 |
+
try:
|
53 |
+
repo_files = api.list_repo_tree(hf_repo_id_for_run, repo_type="model", token=token, recursive=False)
|
54 |
+
step_folders = [
|
55 |
+
item.path for item in repo_files
|
56 |
+
if item.path.startswith("step-") and item.path[5:].isdigit()
|
57 |
+
]
|
58 |
+
|
59 |
+
step_folders.sort(key=lambda x: int(x.split('-')[1]), reverse=True)
|
60 |
+
|
61 |
+
if len(step_folders) > hf_keep_latest_k:
|
62 |
+
folders_to_delete = step_folders[hf_keep_latest_k:]
|
63 |
+
logger.info(f"Found {len(step_folders)} checkpoints on Hub. Deleting {len(folders_to_delete)} older ones: {folders_to_delete}")
|
64 |
+
for folder in folders_to_delete:
|
65 |
+
# Deleting requires repo_id, path_in_repo, and token
|
66 |
+
api.delete_folder(
|
67 |
+
repo_id=hf_repo_id_for_run,
|
68 |
+
path_in_repo=folder,
|
69 |
+
repo_type="model",
|
70 |
+
commit_message=f"Delete old checkpoint {folder}",
|
71 |
+
token=token
|
72 |
+
)
|
73 |
+
logger.info("Hub cleanup complete.")
|
74 |
+
else:
|
75 |
+
logger.info("No old checkpoints found on Hub to delete.")
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"Error during Hub checkpoint cleanup for {hf_repo_id_for_run}: {e}", exc_info=True)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.51.3"
|
6 |
+
}
|
logs/none_nygareex/attempt_0/0/stderr.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
logs/none_nygareex/attempt_0/0/stdout.log
ADDED
File without changes
|
logs/none_nygareex/attempt_0/1/stderr.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
logs/none_nygareex/attempt_0/1/stdout.log
ADDED
File without changes
|
logs/none_nygareex/attempt_0/2/stderr.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
logs/none_nygareex/attempt_0/2/stdout.log
ADDED
File without changes
|
logs/none_nygareex/attempt_0/3/stderr.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|