yangwang825's picture
Upload config
7f883e2 verified
|
raw
history blame
2.37 kB
metadata
datasets:
  - voxceleb
library_name: transformers
metrics:
  - accuracy
tags:
  - audio-classification
  - generated_from_trainer
model-index:
  - name: ecapa-tdnn-voxceleb1-c512-aam
    results:
      - task:
          type: audio-classification
          name: Audio Classification
        dataset:
          name: confit/voxceleb
          type: voxceleb
          config: verification
          split: train
          args: verification
        metrics:
          - type: accuracy
            value: 0.8030272452068618
            name: Accuracy

ecapa-tdnn-voxceleb1-c512-aam

This model is a fine-tuned version of on the confit/voxceleb dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7003
  • Accuracy: 0.8030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 1
  • seed: 914
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
11.3851 1.0 523 11.0293 0.1806
9.7596 2.0 1046 9.1401 0.3850
8.7136 3.0 1569 7.8821 0.5242
7.848 4.0 2092 6.9451 0.6144
7.1912 5.0 2615 6.2630 0.6821
6.6763 6.0 3138 5.7182 0.7292
6.3112 7.0 3661 5.2653 0.7632
6.0255 8.0 4184 4.9663 0.7826
5.8091 9.0 4707 4.7787 0.7957
5.7269 10.0 5230 4.7003 0.8030

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.0.0+cu117
  • Datasets 3.2.0
  • Tokenizers 0.21.0