File size: 2,369 Bytes
040cde3
38bf27b
 
7f883e2
38bf27b
 
7f883e2
 
 
995a299
 
ddf2069
 
38bf27b
7f883e2
ddf2069
 
 
 
 
 
 
7f883e2
38bf27b
7f883e2
040cde3
 
995a299
 
040cde3
995a299
040cde3
ddf2069
995a299
38bf27b
 
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
040cde3
995a299
38bf27b
995a299
 
 
 
 
 
 
 
040cde3
995a299
040cde3
995a299
 
38bf27b
 
 
 
 
 
 
 
 
 
040cde3
 
995a299
040cde3
995a299
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
datasets:
- voxceleb
library_name: transformers
metrics:
- accuracy
tags:
- audio-classification
- generated_from_trainer
model-index:
- name: ecapa-tdnn-voxceleb1-c512-aam
  results:
  - task:
      type: audio-classification
      name: Audio Classification
    dataset:
      name: confit/voxceleb
      type: voxceleb
      config: verification
      split: train
      args: verification
    metrics:
    - type: accuracy
      value: 0.8030272452068618
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ecapa-tdnn-voxceleb1-c512-aam

This model is a fine-tuned version of [](https://huggingface.co/) on the confit/voxceleb dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7003
- Accuracy: 0.8030

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 1
- seed: 914
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 11.3851       | 1.0   | 523  | 11.0293         | 0.1806   |
| 9.7596        | 2.0   | 1046 | 9.1401          | 0.3850   |
| 8.7136        | 3.0   | 1569 | 7.8821          | 0.5242   |
| 7.848         | 4.0   | 2092 | 6.9451          | 0.6144   |
| 7.1912        | 5.0   | 2615 | 6.2630          | 0.6821   |
| 6.6763        | 6.0   | 3138 | 5.7182          | 0.7292   |
| 6.3112        | 7.0   | 3661 | 5.2653          | 0.7632   |
| 6.0255        | 8.0   | 4184 | 4.9663          | 0.7826   |
| 5.8091        | 9.0   | 4707 | 4.7787          | 0.7957   |
| 5.7269        | 10.0  | 5230 | 4.7003          | 0.8030   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.0.0+cu117
- Datasets 3.2.0
- Tokenizers 0.21.0