|
--- |
|
language: |
|
- en |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:404290 |
|
- loss:OnlineContrastiveLoss |
|
base_model: sentence-transformers/stsb-distilbert-base |
|
widget: |
|
- source_sentence: What does the lock symbol on my iPhone 6 means? |
|
sentences: |
|
- How did the Soviet Navy compare to the US Navy? |
|
- What does the iPhone icon with lock and arrow mean? |
|
- What is the importance of electrical engineering? |
|
- source_sentence: Why are blue and red neon lights illegal or restricted for commercial |
|
uses in Honduras? |
|
sentences: |
|
- Why are blue and red neon lights illegal or restricted for commercial uses in |
|
Colombia? |
|
- Why would I want a Raspberry Pi? |
|
- How do I see things as they are? |
|
- source_sentence: How will Hillary Clinton deal with russia? |
|
sentences: |
|
- What would have happened if Barty crouch Jr escaped the dementors and made it |
|
back to the graveyard? |
|
- How will Hillary Clinton deal with terrorism? |
|
- I am a commercial student who wishes to study accounting, but now I wish to study |
|
law. Is it possible? |
|
- source_sentence: What are the best managing skills? |
|
sentences: |
|
- What are the top skills of effective Product Managers? |
|
- How do I lose weight in a short time? |
|
- What are some good songs for lyrical dances? |
|
- source_sentence: What is the best fact checking sources that all Quorans will most |
|
trust? |
|
sentences: |
|
- Do people still write love letters? |
|
- Is working in McKinsey one of the best and surest ways to get into Harvard Business |
|
School? |
|
- What is the most memorable book that Quorans have read? |
|
datasets: |
|
- sentence-transformers/quora-duplicates |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- cosine_mcc |
|
- average_precision |
|
- f1 |
|
- precision |
|
- recall |
|
- threshold |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: quora duplicates |
|
type: quora-duplicates |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.869 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.813665509223938 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.8390243902439025 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7617226243019104 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.7818181818181819 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9052631578947369 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.8852756469769394 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.7337941850587686 |
|
name: Cosine Mcc |
|
- task: |
|
type: paraphrase-mining |
|
name: Paraphrase Mining |
|
dataset: |
|
name: quora duplicates dev |
|
type: quora-duplicates-dev |
|
metrics: |
|
- type: average_precision |
|
value: 0.5427423938771084 |
|
name: Average Precision |
|
- type: f1 |
|
value: 0.5532539228607665 |
|
name: F1 |
|
- type: precision |
|
value: 0.5508021390374331 |
|
name: Precision |
|
- type: recall |
|
value: 0.5557276315132138 |
|
name: Recall |
|
- type: threshold |
|
value: 0.865865558385849 |
|
name: Threshold |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9298 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9732 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.982 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9868 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9298 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.4154 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.26792 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.1417 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8009069531416296 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9349178789609083 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9610774822138647 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9765400300287947 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9525570390902354 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9522342063492065 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9400294978560327 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision a560fa5fec90547a51a4a41a392d4aef93b49f16 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/stsb-distilbert-base-ocl") |
|
# Run inference |
|
sentences = [ |
|
'What is the best fact checking sources that all Quorans will most trust?', |
|
'What is the most memorable book that Quorans have read?', |
|
'Is working in McKinsey one of the best and surest ways to get into Harvard Business School?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Dataset: `quora-duplicates` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------------|:-----------| |
|
| cosine_accuracy | 0.869 | |
|
| cosine_accuracy_threshold | 0.8137 | |
|
| cosine_f1 | 0.839 | |
|
| cosine_f1_threshold | 0.7617 | |
|
| cosine_precision | 0.7818 | |
|
| cosine_recall | 0.9053 | |
|
| **cosine_ap** | **0.8853** | |
|
| cosine_mcc | 0.7338 | |
|
|
|
#### Paraphrase Mining |
|
|
|
* Dataset: `quora-duplicates-dev` |
|
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator) |
|
|
|
| Metric | Value | |
|
|:----------------------|:-----------| |
|
| **average_precision** | **0.5427** | |
|
| f1 | 0.5533 | |
|
| precision | 0.5508 | |
|
| recall | 0.5557 | |
|
| threshold | 0.8659 | |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9298 | |
|
| cosine_accuracy@3 | 0.9732 | |
|
| cosine_accuracy@5 | 0.982 | |
|
| cosine_accuracy@10 | 0.9868 | |
|
| cosine_precision@1 | 0.9298 | |
|
| cosine_precision@3 | 0.4154 | |
|
| cosine_precision@5 | 0.2679 | |
|
| cosine_precision@10 | 0.1417 | |
|
| cosine_recall@1 | 0.8009 | |
|
| cosine_recall@3 | 0.9349 | |
|
| cosine_recall@5 | 0.9611 | |
|
| cosine_recall@10 | 0.9765 | |
|
| **cosine_ndcg@10** | **0.9526** | |
|
| cosine_mrr@10 | 0.9522 | |
|
| cosine_map@100 | 0.94 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### quora-duplicates |
|
|
|
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) |
|
* Size: 404,290 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 16.01 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~64.40%</li><li>1: ~35.60%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>How much worse do things need to get before the "blue" states cut off welfare to the "red" states?</code> | <code>If the red states and the blue states were separated into two countries, which country would be more successful?</code> | <code>0</code> | |
|
| <code>Can you offer me any advice on how to lose weight?</code> | <code>What are the best ways to lose weight? What is the best diet plan?</code> | <code>1</code> | |
|
| <code>How do I break my knee?</code> | <code>How do I break my elbow?</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### quora-duplicates |
|
|
|
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) |
|
* Size: 404,290 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 15.98 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:---------------| |
|
| <code>Which is the best SAP online training centre at Hyderabad?</code> | <code>Which is the best sap workflow online training institute in Hyderabad?</code> | <code>1</code> | |
|
| <code>How did World War Two start?</code> | <code>What will most likely cause World War III?</code> | <code>0</code> | |
|
| <code>How do I find a unique string from a given string in Java without methods such as split, contain, and divide?</code> | <code>How can I split the string "[] {() <>} []" into " [,], {, (, ..." in Java?</code> | <code>0</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 | |
|
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:--------------------------------------:|:--------------:| |
|
| 0 | 0 | - | - | 0.7402 | 0.4200 | 0.9413 | |
|
| 0.0640 | 100 | 2.481 | - | - | - | - | |
|
| 0.1280 | 200 | 2.1466 | - | - | - | - | |
|
| 0.1599 | 250 | - | 1.7997 | 0.8327 | 0.4596 | 0.9355 | |
|
| 0.1919 | 300 | 2.0354 | - | - | - | - | |
|
| 0.2559 | 400 | 1.9342 | - | - | - | - | |
|
| 0.3199 | 500 | 1.9132 | 1.6231 | 0.8617 | 0.4896 | 0.9425 | |
|
| 0.3839 | 600 | 1.8015 | - | - | - | - | |
|
| 0.4479 | 700 | 1.7407 | - | - | - | - | |
|
| 0.4798 | 750 | - | 1.4953 | 0.8737 | 0.5112 | 0.9468 | |
|
| 0.5118 | 800 | 1.6454 | - | - | - | - | |
|
| 0.5758 | 900 | 1.6568 | - | - | - | - | |
|
| 0.6398 | 1000 | 1.6811 | 1.4678 | 0.8751 | 0.5290 | 0.9457 | |
|
| 0.7038 | 1100 | 1.711 | - | - | - | - | |
|
| 0.7678 | 1200 | 1.6449 | - | - | - | - | |
|
| 0.7997 | 1250 | - | 1.4363 | 0.8811 | 0.5327 | 0.9507 | |
|
| 0.8317 | 1300 | 1.5921 | - | - | - | - | |
|
| 0.8957 | 1400 | 1.5062 | - | - | - | - | |
|
| 0.9597 | 1500 | 1.5728 | 1.4029 | 0.8853 | 0.5427 | 0.9526 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.4.0 |
|
- Transformers: 4.48.1 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |