File size: 24,169 Bytes
9e58e8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:404290
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
widget:
- source_sentence: What does the lock symbol on my iPhone 6 means?
sentences:
- How did the Soviet Navy compare to the US Navy?
- What does the iPhone icon with lock and arrow mean?
- What is the importance of electrical engineering?
- source_sentence: Why are blue and red neon lights illegal or restricted for commercial
uses in Honduras?
sentences:
- Why are blue and red neon lights illegal or restricted for commercial uses in
Colombia?
- Why would I want a Raspberry Pi?
- How do I see things as they are?
- source_sentence: How will Hillary Clinton deal with russia?
sentences:
- What would have happened if Barty crouch Jr escaped the dementors and made it
back to the graveyard?
- How will Hillary Clinton deal with terrorism?
- I am a commercial student who wishes to study accounting, but now I wish to study
law. Is it possible?
- source_sentence: What are the best managing skills?
sentences:
- What are the top skills of effective Product Managers?
- How do I lose weight in a short time?
- What are some good songs for lyrical dances?
- source_sentence: What is the best fact checking sources that all Quorans will most
trust?
sentences:
- Do people still write love letters?
- Is working in McKinsey one of the best and surest ways to get into Harvard Business
School?
- What is the most memorable book that Quorans have read?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.869
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.813665509223938
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8390243902439025
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7617226243019104
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7818181818181819
name: Cosine Precision
- type: cosine_recall
value: 0.9052631578947369
name: Cosine Recall
- type: cosine_ap
value: 0.8852756469769394
name: Cosine Ap
- type: cosine_mcc
value: 0.7337941850587686
name: Cosine Mcc
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5427423938771084
name: Average Precision
- type: f1
value: 0.5532539228607665
name: F1
- type: precision
value: 0.5508021390374331
name: Precision
- type: recall
value: 0.5557276315132138
name: Recall
- type: threshold
value: 0.865865558385849
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9298
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9732
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9868
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9298
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4154
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.26792
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1417
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8009069531416296
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9349178789609083
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9610774822138647
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9765400300287947
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9525570390902354
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9522342063492065
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9400294978560327
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision a560fa5fec90547a51a4a41a392d4aef93b49f16 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'What is the best fact checking sources that all Quorans will most trust?',
'What is the most memorable book that Quorans have read?',
'Is working in McKinsey one of the best and surest ways to get into Harvard Business School?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `quora-duplicates`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.869 |
| cosine_accuracy_threshold | 0.8137 |
| cosine_f1 | 0.839 |
| cosine_f1_threshold | 0.7617 |
| cosine_precision | 0.7818 |
| cosine_recall | 0.9053 |
| **cosine_ap** | **0.8853** |
| cosine_mcc | 0.7338 |
#### Paraphrase Mining
* Dataset: `quora-duplicates-dev`
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| **average_precision** | **0.5427** |
| f1 | 0.5533 |
| precision | 0.5508 |
| recall | 0.5557 |
| threshold | 0.8659 |
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9298 |
| cosine_accuracy@3 | 0.9732 |
| cosine_accuracy@5 | 0.982 |
| cosine_accuracy@10 | 0.9868 |
| cosine_precision@1 | 0.9298 |
| cosine_precision@3 | 0.4154 |
| cosine_precision@5 | 0.2679 |
| cosine_precision@10 | 0.1417 |
| cosine_recall@1 | 0.8009 |
| cosine_recall@3 | 0.9349 |
| cosine_recall@5 | 0.9611 |
| cosine_recall@10 | 0.9765 |
| **cosine_ndcg@10** | **0.9526** |
| cosine_mrr@10 | 0.9522 |
| cosine_map@100 | 0.94 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### quora-duplicates
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 404,290 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.01 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~64.40%</li><li>1: ~35.60%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>How much worse do things need to get before the "blue" states cut off welfare to the "red" states?</code> | <code>If the red states and the blue states were separated into two countries, which country would be more successful?</code> | <code>0</code> |
| <code>Can you offer me any advice on how to lose weight?</code> | <code>What are the best ways to lose weight? What is the best diet plan?</code> | <code>1</code> |
| <code>How do I break my knee?</code> | <code>How do I break my elbow?</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### quora-duplicates
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 404,290 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.98 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.9 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------|:---------------|
| <code>Which is the best SAP online training centre at Hyderabad?</code> | <code>Which is the best sap workflow online training institute in Hyderabad?</code> | <code>1</code> |
| <code>How did World War Two start?</code> | <code>What will most likely cause World War III?</code> | <code>0</code> |
| <code>How do I find a unique string from a given string in Java without methods such as split, contain, and divide?</code> | <code>How can I split the string "[] {() <>} []" into " [,], {, (, ..." in Java?</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:--------------------------------------:|:--------------:|
| 0 | 0 | - | - | 0.7402 | 0.4200 | 0.9413 |
| 0.0640 | 100 | 2.481 | - | - | - | - |
| 0.1280 | 200 | 2.1466 | - | - | - | - |
| 0.1599 | 250 | - | 1.7997 | 0.8327 | 0.4596 | 0.9355 |
| 0.1919 | 300 | 2.0354 | - | - | - | - |
| 0.2559 | 400 | 1.9342 | - | - | - | - |
| 0.3199 | 500 | 1.9132 | 1.6231 | 0.8617 | 0.4896 | 0.9425 |
| 0.3839 | 600 | 1.8015 | - | - | - | - |
| 0.4479 | 700 | 1.7407 | - | - | - | - |
| 0.4798 | 750 | - | 1.4953 | 0.8737 | 0.5112 | 0.9468 |
| 0.5118 | 800 | 1.6454 | - | - | - | - |
| 0.5758 | 900 | 1.6568 | - | - | - | - |
| 0.6398 | 1000 | 1.6811 | 1.4678 | 0.8751 | 0.5290 | 0.9457 |
| 0.7038 | 1100 | 1.711 | - | - | - | - |
| 0.7678 | 1200 | 1.6449 | - | - | - | - |
| 0.7997 | 1250 | - | 1.4363 | 0.8811 | 0.5327 | 0.9507 |
| 0.8317 | 1300 | 1.5921 | - | - | - | - |
| 0.8957 | 1400 | 1.5062 | - | - | - | - |
| 0.9597 | 1500 | 1.5728 | 1.4029 | 0.8853 | 0.5427 | 0.9526 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |