|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robeczech_lr3e-05_bs16_train287 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robeczech_lr3e-05_bs16_train287 |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1179 |
|
- Precision: 0.9454 |
|
- Recall: 0.9595 |
|
- F1: 0.9524 |
|
- Accuracy: 0.9714 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 18 | 1.1550 | 1.0 | 0.0005 | 0.0010 | 0.5668 | |
|
| No log | 2.0 | 36 | 0.4725 | 0.7099 | 0.7006 | 0.7052 | 0.8587 | |
|
| No log | 3.0 | 54 | 0.2293 | 0.8740 | 0.8643 | 0.8691 | 0.9351 | |
|
| No log | 4.0 | 72 | 0.1474 | 0.9224 | 0.9126 | 0.9175 | 0.9565 | |
|
| No log | 5.0 | 90 | 0.1210 | 0.9457 | 0.9411 | 0.9434 | 0.9697 | |
|
| No log | 6.0 | 108 | 0.1212 | 0.9409 | 0.9382 | 0.9396 | 0.9674 | |
|
| No log | 7.0 | 126 | 0.1067 | 0.9540 | 0.9517 | 0.9529 | 0.9740 | |
|
| No log | 8.0 | 144 | 0.0918 | 0.9574 | 0.9551 | 0.9562 | 0.9753 | |
|
| No log | 9.0 | 162 | 0.1076 | 0.9549 | 0.9517 | 0.9533 | 0.9749 | |
|
| No log | 10.0 | 180 | 0.0990 | 0.9599 | 0.9585 | 0.9592 | 0.9774 | |
|
| No log | 11.0 | 198 | 0.1027 | 0.9673 | 0.9570 | 0.9621 | 0.9778 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|