File size: 2,601 Bytes
091dd99
 
bfafb61
 
091dd99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfafb61
091dd99
bfafb61
 
 
 
 
091dd99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfafb61
 
 
 
 
 
 
 
 
 
 
091dd99
 
 
 
 
 
df9eebb
091dd99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: robeczech_lr3e-05_bs16_train287
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robeczech_lr3e-05_bs16_train287

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1179
- Precision: 0.9454
- Recall: 0.9595
- F1: 0.9524
- Accuracy: 0.9714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 18   | 1.1550          | 1.0       | 0.0005 | 0.0010 | 0.5668   |
| No log        | 2.0   | 36   | 0.4725          | 0.7099    | 0.7006 | 0.7052 | 0.8587   |
| No log        | 3.0   | 54   | 0.2293          | 0.8740    | 0.8643 | 0.8691 | 0.9351   |
| No log        | 4.0   | 72   | 0.1474          | 0.9224    | 0.9126 | 0.9175 | 0.9565   |
| No log        | 5.0   | 90   | 0.1210          | 0.9457    | 0.9411 | 0.9434 | 0.9697   |
| No log        | 6.0   | 108  | 0.1212          | 0.9409    | 0.9382 | 0.9396 | 0.9674   |
| No log        | 7.0   | 126  | 0.1067          | 0.9540    | 0.9517 | 0.9529 | 0.9740   |
| No log        | 8.0   | 144  | 0.0918          | 0.9574    | 0.9551 | 0.9562 | 0.9753   |
| No log        | 9.0   | 162  | 0.1076          | 0.9549    | 0.9517 | 0.9533 | 0.9749   |
| No log        | 10.0  | 180  | 0.0990          | 0.9599    | 0.9585 | 0.9592 | 0.9774   |
| No log        | 11.0  | 198  | 0.1027          | 0.9673    | 0.9570 | 0.9621 | 0.9778   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1