w11wo's picture
Update metadata with huggingface_hub
748d394
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: microsoft/deberta-v3-small
model-index:
  - name: deberta-v3-small-isarcasm
    results:
      - task:
          type: text-classification
        dataset:
          name: iSarcasm
          type: isarcasm
          split: test
        metrics:
          - type: f1
            value: 0.44808743169398907
            name: f1
          - type: accuracy
            value: 0.7722660653889515
            name: accuracy
          - type: precision
            value: 0.3923444976076555
            name: precision
          - type: recall
            value: 0.5222929936305732
            name: recall

deberta-v3-small-isarcasm

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6010
  • Accuracy: 0.7723
  • F1: 0.4481
  • Precision: 0.3923
  • Recall: 0.5223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 429 0.6567 0.8286 0.0 0.0 0.0
0.6792 2.0 858 0.5566 0.8286 0.625 0.5 0.8333
0.5916 3.0 1287 1.6155 0.7714 0.0 0.0 0.0
0.4278 4.0 1716 1.9964 0.7429 0.1818 0.2 0.1667
0.2417 5.0 2145 2.1995 0.7714 0.2 0.25 0.1667

Framework versions

  • Transformers 4.32.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3