--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: microsoft/deberta-v3-small model-index: - name: deberta-v3-small-isarcasm results: - task: type: text-classification dataset: name: iSarcasm type: isarcasm split: test metrics: - type: f1 value: 0.44808743169398907 name: f1 - type: accuracy value: 0.7722660653889515 name: accuracy - type: precision value: 0.3923444976076555 name: precision - type: recall value: 0.5222929936305732 name: recall --- # deberta-v3-small-isarcasm This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6010 - Accuracy: 0.7723 - F1: 0.4481 - Precision: 0.3923 - Recall: 0.5223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 429 | 0.6567 | 0.8286 | 0.0 | 0.0 | 0.0 | | 0.6792 | 2.0 | 858 | 0.5566 | 0.8286 | 0.625 | 0.5 | 0.8333 | | 0.5916 | 3.0 | 1287 | 1.6155 | 0.7714 | 0.0 | 0.0 | 0.0 | | 0.4278 | 4.0 | 1716 | 1.9964 | 0.7429 | 0.1818 | 0.2 | 0.1667 | | 0.2417 | 5.0 | 2145 | 2.1995 | 0.7714 | 0.2 | 0.25 | 0.1667 | ### Framework versions - Transformers 4.32.0 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3