|
--- |
|
license: apache-2.0 |
|
pipeline_tag: object-detection |
|
library_name: ultralytics |
|
model_type: yolov9 |
|
datasets: |
|
- benediktkol/DDOS |
|
metrics: |
|
- accuracy |
|
--- |
|
|
|
YOLO298B is a custom‑trained Ultralytics YOLO model (`best.pt`) built by **Team 6 (SJSU)**. |
|
It detects aerial classes in aerial imagery collected by autonomous drones. |
|
|
|
| Attribute | Value | |
|
|------------------|----------------| |
|
| **Architecture** | YOLO‑v9‑S | |
|
| **Input size** | 640 × 640 px | |
|
| **Classes** | *n* | |
|
| **Checkpoint** | 5.5 MB | |
|
|
|
## Intended uses & limitations |
|
|
|
| Use‑case | ✅ Recommended | 🚫 Not recommended | |
|
|--------------------------------------|---------------|--------------------| |
|
| Real‑time obstacle detection on UAVs | ✔️ | | |
|
| Academic research / benchmarking | ✔️ | | |
|
| Safety‑critical deployment w/o human | | ❌ | |
|
|
|
## Training data |
|
Dataset: **benediktkol/DDOS** – contains drone‑view images with obstacles (*\<brief description\>*). |
|
Split: 80 % train · 10 % val · 10 % test |
|
|
|
## Quick start |
|
|
|
```python |
|
from ultralytics import YOLO |
|
|
|
model = YOLO("vsham001/Yolo298B") |
|
results = model("https://ultralytics.com/images/bus.jpg") |
|
results[0].show() |
|
|