Yolo298B / README.md
vsham001's picture
Update README.md
1e71228 verified
---
license: apache-2.0 # must match Settings → Licensing
pipeline_tag: object-detection
library_name: ultralytics
model_type: yolov9
datasets:
- benediktkol/DDOS
metrics:
- accuracy
---
YOLO298B is a custom‑trained Ultralytics YOLO model (`best.pt`) built by **Team 6 (SJSU)**.
It detects aerial classes in aerial imagery collected by autonomous drones.
| Attribute | Value |
|------------------|----------------|
| **Architecture** | YOLO‑v9‑S |
| **Input size** | 640 × 640 px |
| **Classes** | *n* |
| **Checkpoint** | 5.5 MB |
## Intended uses & limitations
| Use‑case | ✅ Recommended | 🚫 Not recommended |
|--------------------------------------|---------------|--------------------|
| Real‑time obstacle detection on UAVs | ✔️ | |
| Academic research / benchmarking | ✔️ | |
| Safety‑critical deployment w/o human | | ❌ |
## Training data
Dataset: **benediktkol/DDOS** – contains drone‑view images with obstacles (*\<brief description\>*).
Split: 80 % train · 10 % val · 10 % test
## Quick start
```python
from ultralytics import YOLO
model = YOLO("vsham001/Yolo298B")
results = model("https://ultralytics.com/images/bus.jpg")
results[0].show()