Yolo298B / README.md
vsham001's picture
Update README.md
1e71228 verified
metadata
license: apache-2.0
pipeline_tag: object-detection
library_name: ultralytics
model_type: yolov9
datasets:
  - benediktkol/DDOS
metrics:
  - accuracy

YOLO298B is a custom‑trained Ultralytics YOLO model (best.pt) built by Team 6 (SJSU).
It detects aerial classes in aerial imagery collected by autonomous drones.

Attribute Value
Architecture YOLO‑v9‑S
Input size 640 × 640 px
Classes n
Checkpoint 5.5 MB

Intended uses & limitations

Use‑case ✅ Recommended 🚫 Not recommended
Real‑time obstacle detection on UAVs ✔️
Academic research / benchmarking ✔️
Safety‑critical deployment w/o human

Training data

Dataset: benediktkol/DDOS – contains drone‑view images with obstacles (<brief description>).
Split: 80 % train · 10 % val · 10 % test

Quick start

from ultralytics import YOLO

model = YOLO("vsham001/Yolo298B")
results = model("https://ultralytics.com/images/bus.jpg")
results[0].show()