varcoder's picture
update model card README.md
f1aa805
metadata
license: other
base_model: nvidia/mit-b5
tags:
  - generated_from_trainer
model-index:
  - name: segcrack9k_conglomerate_train_test
    results: []

segcrack9k_conglomerate_train_test

This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0298
  • Mean Iou: 0.3639
  • Mean Accuracy: 0.7278
  • Overall Accuracy: 0.7278
  • Accuracy Background: nan
  • Accuracy Crack: 0.7278
  • Iou Background: 0.0
  • Iou Crack: 0.7278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crack Iou Background Iou Crack
0.0374 0.18 1000 0.0410 0.2472 0.4944 0.4944 nan 0.4944 0.0 0.4944
0.0337 0.36 2000 0.0341 0.3749 0.7497 0.7497 nan 0.7497 0.0 0.7497
0.0209 0.55 3000 0.0318 0.3335 0.6670 0.6670 nan 0.6670 0.0 0.6670
0.0099 0.73 4000 0.0315 0.3371 0.6743 0.6743 nan 0.6743 0.0 0.6743
0.026 0.91 5000 0.0298 0.3639 0.7278 0.7278 nan 0.7278 0.0 0.7278

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3