varcoder commited on
Commit
f1aa805
·
1 Parent(s): ef0c903

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b5
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segcrack9k_conglomerate_train_test
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segcrack9k_conglomerate_train_test
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0298
19
+ - Mean Iou: 0.3639
20
+ - Mean Accuracy: 0.7278
21
+ - Overall Accuracy: 0.7278
22
+ - Accuracy Background: nan
23
+ - Accuracy Crack: 0.7278
24
+ - Iou Background: 0.0
25
+ - Iou Crack: 0.7278
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
56
+ | 0.0374 | 0.18 | 1000 | 0.0410 | 0.2472 | 0.4944 | 0.4944 | nan | 0.4944 | 0.0 | 0.4944 |
57
+ | 0.0337 | 0.36 | 2000 | 0.0341 | 0.3749 | 0.7497 | 0.7497 | nan | 0.7497 | 0.0 | 0.7497 |
58
+ | 0.0209 | 0.55 | 3000 | 0.0318 | 0.3335 | 0.6670 | 0.6670 | nan | 0.6670 | 0.0 | 0.6670 |
59
+ | 0.0099 | 0.73 | 4000 | 0.0315 | 0.3371 | 0.6743 | 0.6743 | nan | 0.6743 | 0.0 | 0.6743 |
60
+ | 0.026 | 0.91 | 5000 | 0.0298 | 0.3639 | 0.7278 | 0.7278 | nan | 0.7278 | 0.0 | 0.7278 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.31.0
66
+ - Pytorch 2.0.1+cu118
67
+ - Datasets 2.14.0
68
+ - Tokenizers 0.13.3