File size: 13,797 Bytes
bc32e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482e5b8
bc32e07
 
 
 
 
 
 
 
 
 
 
 
 
 
874fab4
e3c5f49
1ae325a
874fab4
50de40a
bc32e07
d047f0a
 
 
 
 
 
 
 
1ae325a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d047f0a
 
4ab18fb
d047f0a
726f6c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d047f0a
874fab4
50de40a
30a0b69
 
 
 
 
 
1ae325a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d968e06
 
 
 
1ae325a
 
d968e06
 
 
 
 
1ae325a
 
 
 
 
 
 
 
 
 
d968e06
1ae325a
 
 
d968e06
1ae325a
 
 
30a0b69
 
 
bc32e07
fa40640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0bb40e
fa40640
 
6eb7b85
 
 
 
 
 
 
 
1ae325a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb7b85
 
4ab18fb
6eb7b85
14e974e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc32e07
607ffea
 
bc32e07
482e5b8
30a0b69
 
 
 
 
 
 
482e5b8
30a0b69
874fab4
30a0b69
607ffea
30a0b69
 
 
 
 
 
 
 
 
 
 
bc32e07
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
---
quantized_by: ubergarm
pipeline_tag: text-generation
base_model: zai-org/GLM-4.5-Air
license: mit
base_model_relation: quantized
tags:
- imatrix
- conversational
- ik_llama.cpp
---

## `ik_llama.cpp` imatrix Quantizations of zai-org/GLM-4.5-Air
This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!

*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8.

These quants provide best in class perplexity for the given memory footprint.

## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!

## Quant Collection
Perplexity computed against *wiki.test.raw*.

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

These first two are just test quants for baseline perplexity comparison:
* `BF16` 205.811 GiB (16.004 BPW)
  - Final estimate: PPL = 4.5704 +/- 0.02796

* `Q8_0` 109.381 GiB (8.505 BPW)
  - Final estimate: PPL = 4.5798 +/- 0.02804

## IQ5_K 77.704 GiB (6.042 BPW)
Final estimate: PPL = 4.5867 +/- 0.02806

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0

# Routed Experts Layers [1-46]
blk\.(1)\.ffn_down_exps\.weight=q8_0
blk\.(1)\.ffn_(gate|up)_exps\.weight=q8_0

blk\..*\.ffn_down_exps\.weight=q6_0
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0

# Non-Repeating Layers
token_embd\.weight=iq6_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 0 -m 0 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ5_K.gguf \
    IQ5_K \
    192
```

</details>

## IQ5_KS 72.855 GiB (5.665 BPW)
Final estimate: PPL = 4.5948 +/- 0.02815

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq5_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q6_0
blk\..*\.ffn_(gate|up)\.weight=iq5_ks

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=q6_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks

# Routed Experts Layers [1-46]
blk\..*\.ffn_down_exps\.weight=q6_0
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_ks

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 0 -m 0 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ5_KS.gguf \
    IQ5_KS \
    192
```

</details>

## IQ4_K 62.910 GiB (4.892 BPW)
Final estimate: PPL = 4.6273 +/- 0.02839

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq5_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q6_0
blk\..*\.ffn_(gate|up)\.weight=iq5_ks

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=q6_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks

# Routed Experts Layers [1-46]
blk\..*\.ffn_down_exps\.weight=q5_0
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 1 -m 1 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ4_K.gguf \
    IQ4_K \
    192
```

</details>

## IQ4_KSS 54.801 GiB (4.261 BPW)
Final estimate: PPL = 4.7056 +/- 0.02909

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\.(0|1)\.attn_q.*=q8_0
blk\.(0|1)\.attn_k.*=q8_0
blk\.(0|1)\.attn_v.*=q8_0
blk\.(0|1)\.attn_output.*=q8_0

blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq5_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q6_0
blk\..*\.ffn_(gate|up)\.weight=iq5_ks

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=q6_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks

# Routed Experts Layers [1-46]
#blk\.(1|46)\.ffn_down_exps\.weight=q8_0
#blk\.(1|46)\.ffn_(gate|up)_exps\.weight=q8_0

blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 0 -m 0 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ4_KSS.gguf \
    IQ4_KSS \
    192
```

</details>

## IQ3_KS 49.072 GiB (3.816 BPW)
Final estimate: PPL = 4.7975 +/- 0.02972

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\.(0|1)\.attn_q.*=q8_0
blk\.(0|1)\.attn_k.*=q8_0
blk\.(0|1)\.attn_v.*=q8_0
blk\.(0|1)\.attn_output.*=q8_0

blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq5_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q6_0
blk\..*\.ffn_(gate|up)\.weight=iq5_ks

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=q6_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks

# Routed Experts Layers [1-46]
blk\.(1)\.ffn_down_exps\.weight=q6_0
blk\.(1)\.ffn_(gate|up)_exps\.weight=iq5_ks

blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 0 -m 0 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-PR624-IQ3_KS.gguf \
    IQ3_KS \
    192
```

</details>


## IQ2_KL 43.870 GiB (3.411 BPW)
Final estimate: PPL = 5.0697 +/- 0.03166

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\..*\.attn_q.*=iq4_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq4_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=iq4_nl
blk\..*\.ffn_(gate|up)\.weight=iq4_kss

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kss

# Routed Experts Layers [1-46]
blk\.(1)\.ffn_down_exps\.weight=iq4_nl
blk\.(1)\.ffn_(gate|up)_exps\.weight=iq4_kss

blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq4_ks
blk\..*\.nextn\.shared_head_head\.weight=iq4_ks
blk\..*\.nextn\.eh_proj\.weight=q6_0

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 0 -m 0 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ2_KL.gguf \
    IQ2_KL \
    192
```

</details>

## IQ1_KT 36.039 GiB (2.802 BPW)
Final estimate: PPL = 5.8214 +/- 0.03767

<details>

<summary>πŸ‘ˆ Secret Recipe</summary>

```bash
#!/usr/bin/env bash

custom="
# 47 Repeating Layers [0-46]
# Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options.

# Attention
blk\..*\.attn_q.*=iq4_kt
blk\..*\.attn_k.*=iq4_kt
blk\..*\.attn_v.*=iq4_kt
blk\..*\.attn_output.*=iq4_kt

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=iq4_nl
blk\..*\.ffn_(gate|up)\.weight=iq4_kt

# Shared Expert Layers [1-46]
blk\..*\.ffn_down_shexp\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kt

# Routed Experts Layers [1-46]
blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt

# NextN MTP Layer [46]
blk\..*\.nextn\.embed_tokens\.weight=iq4_kt
blk\..*\.nextn\.shared_head_head\.weight=iq4_kt
blk\..*\.nextn\.eh_proj\.weight=q8_0

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 1 -m 1 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ1_KT.gguf \
    IQ1_KT \
    192
```

</details>


## Quick Start
If you want to disable thinking, add `/nothink` (correct, no underscore) at the *end* of your prompt.

```bash
# Clone and checkout
$ git clone https://github.com/ikawrakow/ik_llama.cpp
$ cd ik_llama.cpp

# Build for hybrid CPU+CUDA
$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_BLAS=OFF -DGGML_SCHED_MAX_COPIES=1
$ cmake --build build --config Release -j $(nproc)

# Run API server
$ ./build/bin/llama-server \
    --model GLM-4.5-Air-IQ4_KSS-00001-of-00002.gguf \
    --alias ubergarm/GLM-4.5-Air-IQ4_KSS \
    --chat-template chatglm4 \
    --ctx-size 32768 \
    -fa -fmoe \
    -ctk q8_0 -ctv q8_0 \
    -ub 4096 -b 4096 \
    -ngl 99 \
    -ot exps=CPU \
    --parallel 1 \
    --threads 8 \
    --host 127.0.0.1 \
    --port 8080 \
    --no-mmap
```

## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)
* [Mainline llama.cpp Draft PR14939](https://github.com/ggml-org/llama.cpp/pull/14939)
* [ik_llama.cpp GLM-4.5 MoE PR668](https://github.com/ikawrakow/ik_llama.cpp/pull/668)