tyzhu's picture
End of training
1f2ba55 verified
metadata
license: mit
base_model: gpt2-xl
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_nq_train600_eval300_v1_recite_qa
metrics:
  - accuracy
model-index:
  - name: lmind_nq_train600_eval300_v1_recite_qa_gpt2-xl_1e-4
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_nq_train600_eval300_v1_recite_qa
          type: tyzhu/lmind_nq_train600_eval300_v1_recite_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8390196078431372

lmind_nq_train600_eval300_v1_recite_qa_gpt2-xl_1e-4

This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind_nq_train600_eval300_v1_recite_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3982
  • Accuracy: 0.8390

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0096 1.0 93 1.3802 0.6793
0.7666 2.0 186 0.6686 0.7849
0.31 3.0 279 0.4719 0.8184
0.1608 4.0 372 0.4038 0.8311
0.1101 5.0 465 0.3742 0.8372
0.0839 6.0 558 0.3734 0.8393
0.0743 7.0 651 0.3625 0.8404
0.0756 8.0 744 0.3654 0.8399
0.0694 9.0 837 0.3742 0.8400
0.0669 10.0 930 0.3712 0.8403
0.0692 11.0 1023 0.3812 0.8397
0.0717 12.0 1116 0.3797 0.8395
0.0762 13.0 1209 0.3892 0.8393
0.0823 14.0 1302 0.3993 0.8384
0.0789 15.0 1395 0.3946 0.8389
0.0737 16.0 1488 0.3927 0.8393
0.0739 17.0 1581 0.3977 0.8381
0.0741 18.0 1674 0.4060 0.8379
0.0741 19.0 1767 0.4047 0.8389
0.0715 20.0 1860 0.3982 0.8390

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1