File size: 2,954 Bytes
c3a42bf
 
 
 
 
1f2ba55
 
c3a42bf
 
 
 
1f2ba55
 
 
 
 
 
 
 
 
 
 
c3a42bf
 
 
 
 
 
 
1f2ba55
c3a42bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: mit
base_model: gpt2-xl
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train600_eval300_v1_recite_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train600_eval300_v1_recite_qa_gpt2-xl_1e-4
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: tyzhu/lmind_nq_train600_eval300_v1_recite_qa
      type: tyzhu/lmind_nq_train600_eval300_v1_recite_qa
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8390196078431372
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lmind_nq_train600_eval300_v1_recite_qa_gpt2-xl_1e-4

This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train600_eval300_v1_recite_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3982
- Accuracy: 0.8390

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0096        | 1.0   | 93   | 1.3802          | 0.6793   |
| 0.7666        | 2.0   | 186  | 0.6686          | 0.7849   |
| 0.31          | 3.0   | 279  | 0.4719          | 0.8184   |
| 0.1608        | 4.0   | 372  | 0.4038          | 0.8311   |
| 0.1101        | 5.0   | 465  | 0.3742          | 0.8372   |
| 0.0839        | 6.0   | 558  | 0.3734          | 0.8393   |
| 0.0743        | 7.0   | 651  | 0.3625          | 0.8404   |
| 0.0756        | 8.0   | 744  | 0.3654          | 0.8399   |
| 0.0694        | 9.0   | 837  | 0.3742          | 0.8400   |
| 0.0669        | 10.0  | 930  | 0.3712          | 0.8403   |
| 0.0692        | 11.0  | 1023 | 0.3812          | 0.8397   |
| 0.0717        | 12.0  | 1116 | 0.3797          | 0.8395   |
| 0.0762        | 13.0  | 1209 | 0.3892          | 0.8393   |
| 0.0823        | 14.0  | 1302 | 0.3993          | 0.8384   |
| 0.0789        | 15.0  | 1395 | 0.3946          | 0.8389   |
| 0.0737        | 16.0  | 1488 | 0.3927          | 0.8393   |
| 0.0739        | 17.0  | 1581 | 0.3977          | 0.8381   |
| 0.0741        | 18.0  | 1674 | 0.4060          | 0.8379   |
| 0.0741        | 19.0  | 1767 | 0.4047          | 0.8389   |
| 0.0715        | 20.0  | 1860 | 0.3982          | 0.8390   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1