|
--- |
|
license: mit |
|
base_model: gpt2-xl |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: lmind_hotpot_train5000_eval5000_v1_recite_qa_gpt2-xl |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa |
|
type: tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7660672947510094 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lmind_hotpot_train5000_eval5000_v1_recite_qa_gpt2-xl |
|
|
|
This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4522 |
|
- Accuracy: 0.7661 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:--------:|:---------------:| |
|
| 1.9686 | 1.0 | 1452 | 0.6681 | 1.5662 | |
|
| 1.4604 | 2.0 | 2904 | 0.6915 | 1.2069 | |
|
| 1.0522 | 3.0 | 4356 | 0.7149 | 0.9046 | |
|
| 0.7455 | 4.0 | 5808 | 0.7341 | 0.6844 | |
|
| 0.5307 | 5.0 | 7260 | 0.7475 | 0.5420 | |
|
| 0.3796 | 6.0 | 8712 | 0.7560 | 0.4609 | |
|
| 0.2912 | 7.0 | 10164 | 0.7604 | 0.4311 | |
|
| 0.2282 | 8.0 | 11616 | 0.7627 | 0.4184 | |
|
| 0.1905 | 9.0 | 13068 | 0.7640 | 0.4136 | |
|
| 0.1687 | 10.0 | 14520 | 0.7648 | 0.4175 | |
|
| 0.1553 | 11.0 | 15972 | 0.7651 | 0.4212 | |
|
| 0.1447 | 12.0 | 17424 | 0.7653 | 0.4283 | |
|
| 0.1388 | 13.0 | 18876 | 0.7656 | 0.4287 | |
|
| 0.1329 | 14.0 | 20328 | 0.7657 | 0.4349 | |
|
| 0.1292 | 15.0 | 21780 | 0.7657 | 0.4353 | |
|
| 0.1267 | 16.0 | 23232 | 0.7659 | 0.4383 | |
|
| 0.1251 | 17.0 | 24684 | 0.4416 | 0.7661 | |
|
| 0.1201 | 18.0 | 26136 | 0.4467 | 0.7659 | |
|
| 0.1186 | 19.0 | 27588 | 0.4508 | 0.7660 | |
|
| 0.1176 | 20.0 | 29040 | 0.4522 | 0.7661 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|