--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train5000_eval5000_v1_recite_qa_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa type: tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.7660672947510094 --- # lmind_hotpot_train5000_eval5000_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train5000_eval5000_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4522 - Accuracy: 0.7661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.9686 | 1.0 | 1452 | 0.6681 | 1.5662 | | 1.4604 | 2.0 | 2904 | 0.6915 | 1.2069 | | 1.0522 | 3.0 | 4356 | 0.7149 | 0.9046 | | 0.7455 | 4.0 | 5808 | 0.7341 | 0.6844 | | 0.5307 | 5.0 | 7260 | 0.7475 | 0.5420 | | 0.3796 | 6.0 | 8712 | 0.7560 | 0.4609 | | 0.2912 | 7.0 | 10164 | 0.7604 | 0.4311 | | 0.2282 | 8.0 | 11616 | 0.7627 | 0.4184 | | 0.1905 | 9.0 | 13068 | 0.7640 | 0.4136 | | 0.1687 | 10.0 | 14520 | 0.7648 | 0.4175 | | 0.1553 | 11.0 | 15972 | 0.7651 | 0.4212 | | 0.1447 | 12.0 | 17424 | 0.7653 | 0.4283 | | 0.1388 | 13.0 | 18876 | 0.7656 | 0.4287 | | 0.1329 | 14.0 | 20328 | 0.7657 | 0.4349 | | 0.1292 | 15.0 | 21780 | 0.7657 | 0.4353 | | 0.1267 | 16.0 | 23232 | 0.7659 | 0.4383 | | 0.1251 | 17.0 | 24684 | 0.4416 | 0.7661 | | 0.1201 | 18.0 | 26136 | 0.4467 | 0.7659 | | 0.1186 | 19.0 | 27588 | 0.4508 | 0.7660 | | 0.1176 | 20.0 | 29040 | 0.4522 | 0.7661 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1