metadata
license: mit
base_model: gpt2-xl
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train1000_eval500_v1_recite_qa_gpt2-xl
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa
type: tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.7496011644832605
lmind_hotpot_train1000_eval500_v1_recite_qa_gpt2-xl
This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa dataset. It achieves the following results on the evaluation set:
- Loss: 0.4181
- Accuracy: 0.7496
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9823 | 1.0 | 248 | 1.6149 | 0.6398 |
1.3868 | 2.0 | 496 | 1.1929 | 0.6700 |
0.9102 | 3.0 | 744 | 0.8513 | 0.6992 |
0.5869 | 4.0 | 992 | 0.6181 | 0.7218 |
0.364 | 5.0 | 1240 | 0.4963 | 0.7352 |
0.2706 | 6.0 | 1488 | 0.4413 | 0.7420 |
0.1906 | 7.0 | 1736 | 0.4085 | 0.7458 |
0.1474 | 8.0 | 1984 | 0.4010 | 0.7477 |
0.1264 | 9.0 | 2232 | 0.3979 | 0.7484 |
0.1091 | 10.0 | 2480 | 0.4060 | 0.7487 |
0.1072 | 11.0 | 2728 | 0.4050 | 0.7490 |
0.0969 | 12.0 | 2976 | 0.4081 | 0.7492 |
0.0935 | 13.0 | 3224 | 0.4145 | 0.7495 |
0.0932 | 14.0 | 3472 | 0.4078 | 0.7494 |
0.0929 | 15.0 | 3720 | 0.4140 | 0.7494 |
0.0951 | 16.0 | 3968 | 0.4145 | 0.7495 |
0.0926 | 17.0 | 4216 | 0.4134 | 0.7495 |
0.0946 | 18.0 | 4464 | 0.4257 | 0.7493 |
0.0897 | 19.0 | 4712 | 0.4164 | 0.7496 |
0.092 | 20.0 | 4960 | 0.4181 | 0.7496 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1