--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train1000_eval500_v1_recite_qa_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa type: tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.7496011644832605 --- # lmind_hotpot_train1000_eval500_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train1000_eval500_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4181 - Accuracy: 0.7496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9823 | 1.0 | 248 | 1.6149 | 0.6398 | | 1.3868 | 2.0 | 496 | 1.1929 | 0.6700 | | 0.9102 | 3.0 | 744 | 0.8513 | 0.6992 | | 0.5869 | 4.0 | 992 | 0.6181 | 0.7218 | | 0.364 | 5.0 | 1240 | 0.4963 | 0.7352 | | 0.2706 | 6.0 | 1488 | 0.4413 | 0.7420 | | 0.1906 | 7.0 | 1736 | 0.4085 | 0.7458 | | 0.1474 | 8.0 | 1984 | 0.4010 | 0.7477 | | 0.1264 | 9.0 | 2232 | 0.3979 | 0.7484 | | 0.1091 | 10.0 | 2480 | 0.4060 | 0.7487 | | 0.1072 | 11.0 | 2728 | 0.4050 | 0.7490 | | 0.0969 | 12.0 | 2976 | 0.4081 | 0.7492 | | 0.0935 | 13.0 | 3224 | 0.4145 | 0.7495 | | 0.0932 | 14.0 | 3472 | 0.4078 | 0.7494 | | 0.0929 | 15.0 | 3720 | 0.4140 | 0.7494 | | 0.0951 | 16.0 | 3968 | 0.4145 | 0.7495 | | 0.0926 | 17.0 | 4216 | 0.4134 | 0.7495 | | 0.0946 | 18.0 | 4464 | 0.4257 | 0.7493 | | 0.0897 | 19.0 | 4712 | 0.4164 | 0.7496 | | 0.092 | 20.0 | 4960 | 0.4181 | 0.7496 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1