trhgquan's picture
End of training
37b48f8 verified
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: phobert-human-tl-seg-seed-6969
    results: []

phobert-human-tl-seg-seed-6969

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4483
  • Accuracy: 0.8432
  • Precision: 0.6507
  • Recall: 0.4682
  • F1: 0.4928

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 346 0.5129 0.8245 0.5325 0.3537 0.3399
0.5757 2.0 692 0.4692 0.8383 0.6238 0.4332 0.4500
0.4598 3.0 1038 0.4671 0.8357 0.6235 0.4116 0.4280
0.4598 4.0 1384 0.4641 0.8394 0.6756 0.4279 0.4498
0.4567 5.0 1730 0.4582 0.8379 0.6325 0.4272 0.4478
0.4499 6.0 2076 0.4588 0.8406 0.6718 0.4424 0.4617
0.4499 7.0 2422 0.4633 0.8372 0.6655 0.4118 0.4320
0.4517 8.0 2768 0.4522 0.8417 0.6340 0.4522 0.4741
0.4477 9.0 3114 0.4539 0.8402 0.6644 0.4267 0.4503
0.4477 10.0 3460 0.4560 0.8439 0.6645 0.4647 0.4813
0.4508 11.0 3806 0.4534 0.8387 0.6499 0.4235 0.4488
0.444 12.0 4152 0.4483 0.8432 0.6507 0.4682 0.4928
0.444 13.0 4498 0.4501 0.8391 0.6491 0.4355 0.4633
0.4506 14.0 4844 0.4532 0.8394 0.6442 0.4253 0.4490
0.4422 15.0 5190 0.4528 0.8394 0.6497 0.4245 0.4494
0.4498 16.0 5536 0.4663 0.8376 0.6743 0.4123 0.4332
0.4498 17.0 5882 0.4476 0.8417 0.6345 0.4435 0.4672

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0