phobert-human-tl-seg-seed-6969
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4483
- Accuracy: 0.8432
- Precision: 0.6507
- Recall: 0.4682
- F1: 0.4928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
1.0 |
346 |
0.5129 |
0.8245 |
0.5325 |
0.3537 |
0.3399 |
0.5757 |
2.0 |
692 |
0.4692 |
0.8383 |
0.6238 |
0.4332 |
0.4500 |
0.4598 |
3.0 |
1038 |
0.4671 |
0.8357 |
0.6235 |
0.4116 |
0.4280 |
0.4598 |
4.0 |
1384 |
0.4641 |
0.8394 |
0.6756 |
0.4279 |
0.4498 |
0.4567 |
5.0 |
1730 |
0.4582 |
0.8379 |
0.6325 |
0.4272 |
0.4478 |
0.4499 |
6.0 |
2076 |
0.4588 |
0.8406 |
0.6718 |
0.4424 |
0.4617 |
0.4499 |
7.0 |
2422 |
0.4633 |
0.8372 |
0.6655 |
0.4118 |
0.4320 |
0.4517 |
8.0 |
2768 |
0.4522 |
0.8417 |
0.6340 |
0.4522 |
0.4741 |
0.4477 |
9.0 |
3114 |
0.4539 |
0.8402 |
0.6644 |
0.4267 |
0.4503 |
0.4477 |
10.0 |
3460 |
0.4560 |
0.8439 |
0.6645 |
0.4647 |
0.4813 |
0.4508 |
11.0 |
3806 |
0.4534 |
0.8387 |
0.6499 |
0.4235 |
0.4488 |
0.444 |
12.0 |
4152 |
0.4483 |
0.8432 |
0.6507 |
0.4682 |
0.4928 |
0.444 |
13.0 |
4498 |
0.4501 |
0.8391 |
0.6491 |
0.4355 |
0.4633 |
0.4506 |
14.0 |
4844 |
0.4532 |
0.8394 |
0.6442 |
0.4253 |
0.4490 |
0.4422 |
15.0 |
5190 |
0.4528 |
0.8394 |
0.6497 |
0.4245 |
0.4494 |
0.4498 |
16.0 |
5536 |
0.4663 |
0.8376 |
0.6743 |
0.4123 |
0.4332 |
0.4498 |
17.0 |
5882 |
0.4476 |
0.8417 |
0.6345 |
0.4435 |
0.4672 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0