trhgquan's picture
End of training
7930e54 verified
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: phobert-human-tl-seg-seed-69
    results: []

phobert-human-tl-seg-seed-69

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4484
  • Accuracy: 0.8428
  • Precision: 0.6472
  • Recall: 0.4680
  • F1: 0.4918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 346 0.5132 0.8245 0.5325 0.3537 0.3399
0.5879 2.0 692 0.4699 0.8372 0.6490 0.4338 0.4492
0.4602 3.0 1038 0.4677 0.8365 0.6414 0.4133 0.4311
0.4602 4.0 1384 0.4650 0.8387 0.6755 0.4232 0.4445
0.4569 5.0 1730 0.4584 0.8372 0.6211 0.4259 0.4459
0.4498 6.0 2076 0.4587 0.8398 0.6538 0.4421 0.4608
0.4498 7.0 2422 0.4631 0.8372 0.6655 0.4118 0.4320
0.4517 8.0 2768 0.4523 0.8409 0.6333 0.4497 0.4717
0.4471 9.0 3114 0.4536 0.8391 0.6607 0.4230 0.4457
0.4471 10.0 3460 0.4559 0.8439 0.6747 0.4650 0.4830
0.4509 11.0 3806 0.4531 0.8383 0.6474 0.4233 0.4484
0.4438 12.0 4152 0.4484 0.8428 0.6472 0.4680 0.4918
0.4438 13.0 4498 0.4502 0.8383 0.6414 0.4330 0.4603
0.4503 14.0 4844 0.4528 0.8398 0.6454 0.4265 0.4506
0.4423 15.0 5190 0.4527 0.8387 0.6390 0.4217 0.4450
0.45 16.0 5536 0.4661 0.8372 0.6662 0.4110 0.4317
0.45 17.0 5882 0.4474 0.8417 0.6431 0.4438 0.4686

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0