metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: phobert-human-tl-seg-seed-69
results: []
phobert-human-tl-seg-seed-69
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4484
- Accuracy: 0.8428
- Precision: 0.6472
- Recall: 0.4680
- F1: 0.4918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 346 | 0.5132 | 0.8245 | 0.5325 | 0.3537 | 0.3399 |
0.5879 | 2.0 | 692 | 0.4699 | 0.8372 | 0.6490 | 0.4338 | 0.4492 |
0.4602 | 3.0 | 1038 | 0.4677 | 0.8365 | 0.6414 | 0.4133 | 0.4311 |
0.4602 | 4.0 | 1384 | 0.4650 | 0.8387 | 0.6755 | 0.4232 | 0.4445 |
0.4569 | 5.0 | 1730 | 0.4584 | 0.8372 | 0.6211 | 0.4259 | 0.4459 |
0.4498 | 6.0 | 2076 | 0.4587 | 0.8398 | 0.6538 | 0.4421 | 0.4608 |
0.4498 | 7.0 | 2422 | 0.4631 | 0.8372 | 0.6655 | 0.4118 | 0.4320 |
0.4517 | 8.0 | 2768 | 0.4523 | 0.8409 | 0.6333 | 0.4497 | 0.4717 |
0.4471 | 9.0 | 3114 | 0.4536 | 0.8391 | 0.6607 | 0.4230 | 0.4457 |
0.4471 | 10.0 | 3460 | 0.4559 | 0.8439 | 0.6747 | 0.4650 | 0.4830 |
0.4509 | 11.0 | 3806 | 0.4531 | 0.8383 | 0.6474 | 0.4233 | 0.4484 |
0.4438 | 12.0 | 4152 | 0.4484 | 0.8428 | 0.6472 | 0.4680 | 0.4918 |
0.4438 | 13.0 | 4498 | 0.4502 | 0.8383 | 0.6414 | 0.4330 | 0.4603 |
0.4503 | 14.0 | 4844 | 0.4528 | 0.8398 | 0.6454 | 0.4265 | 0.4506 |
0.4423 | 15.0 | 5190 | 0.4527 | 0.8387 | 0.6390 | 0.4217 | 0.4450 |
0.45 | 16.0 | 5536 | 0.4661 | 0.8372 | 0.6662 | 0.4110 | 0.4317 |
0.45 | 17.0 | 5882 | 0.4474 | 0.8417 | 0.6431 | 0.4438 | 0.4686 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0