phobert-human-tl-seg-seed-69
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4484
- Accuracy: 0.8428
- Precision: 0.6472
- Recall: 0.4680
- F1: 0.4918
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
1.0 |
346 |
0.5132 |
0.8245 |
0.5325 |
0.3537 |
0.3399 |
0.5879 |
2.0 |
692 |
0.4699 |
0.8372 |
0.6490 |
0.4338 |
0.4492 |
0.4602 |
3.0 |
1038 |
0.4677 |
0.8365 |
0.6414 |
0.4133 |
0.4311 |
0.4602 |
4.0 |
1384 |
0.4650 |
0.8387 |
0.6755 |
0.4232 |
0.4445 |
0.4569 |
5.0 |
1730 |
0.4584 |
0.8372 |
0.6211 |
0.4259 |
0.4459 |
0.4498 |
6.0 |
2076 |
0.4587 |
0.8398 |
0.6538 |
0.4421 |
0.4608 |
0.4498 |
7.0 |
2422 |
0.4631 |
0.8372 |
0.6655 |
0.4118 |
0.4320 |
0.4517 |
8.0 |
2768 |
0.4523 |
0.8409 |
0.6333 |
0.4497 |
0.4717 |
0.4471 |
9.0 |
3114 |
0.4536 |
0.8391 |
0.6607 |
0.4230 |
0.4457 |
0.4471 |
10.0 |
3460 |
0.4559 |
0.8439 |
0.6747 |
0.4650 |
0.4830 |
0.4509 |
11.0 |
3806 |
0.4531 |
0.8383 |
0.6474 |
0.4233 |
0.4484 |
0.4438 |
12.0 |
4152 |
0.4484 |
0.8428 |
0.6472 |
0.4680 |
0.4918 |
0.4438 |
13.0 |
4498 |
0.4502 |
0.8383 |
0.6414 |
0.4330 |
0.4603 |
0.4503 |
14.0 |
4844 |
0.4528 |
0.8398 |
0.6454 |
0.4265 |
0.4506 |
0.4423 |
15.0 |
5190 |
0.4527 |
0.8387 |
0.6390 |
0.4217 |
0.4450 |
0.45 |
16.0 |
5536 |
0.4661 |
0.8372 |
0.6662 |
0.4110 |
0.4317 |
0.45 |
17.0 |
5882 |
0.4474 |
0.8417 |
0.6431 |
0.4438 |
0.4686 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0