trhgquan's picture
End of training
4c3ceef verified
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: phobert-human-tl-seg-seed-42
    results: []

phobert-human-tl-seg-seed-42

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4484
  • Accuracy: 0.8428
  • Precision: 0.6491
  • Recall: 0.4691
  • F1: 0.4932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 346 0.5133 0.8256 0.5419 0.3574 0.3465
0.5919 2.0 692 0.4692 0.8372 0.6180 0.4317 0.4475
0.4602 3.0 1038 0.4660 0.8361 0.6390 0.4132 0.4307
0.4602 4.0 1384 0.4649 0.8394 0.6767 0.4268 0.4487
0.4568 5.0 1730 0.4581 0.8372 0.6211 0.4259 0.4459
0.4498 6.0 2076 0.4586 0.8402 0.6572 0.4411 0.4606
0.4498 7.0 2422 0.4628 0.8372 0.6626 0.4118 0.4318
0.4516 8.0 2768 0.4520 0.8417 0.6340 0.4522 0.4741
0.4473 9.0 3114 0.4540 0.8387 0.6594 0.4217 0.4441
0.4473 10.0 3460 0.4559 0.8447 0.6911 0.4675 0.4855
0.451 11.0 3806 0.4530 0.8379 0.6461 0.4221 0.4468
0.4436 12.0 4152 0.4484 0.8428 0.6491 0.4691 0.4932
0.4436 13.0 4498 0.4499 0.8394 0.6503 0.4367 0.4648
0.4506 14.0 4844 0.4526 0.8391 0.6419 0.4251 0.4486
0.4418 15.0 5190 0.4523 0.8398 0.6584 0.4261 0.4522
0.4497 16.0 5536 0.4667 0.8372 0.6662 0.4110 0.4317
0.4497 17.0 5882 0.4474 0.8417 0.6431 0.4438 0.4686

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0