phobert-human-tl-seg-seed-42
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4484
- Accuracy: 0.8428
- Precision: 0.6491
- Recall: 0.4691
- F1: 0.4932
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
1.0 |
346 |
0.5133 |
0.8256 |
0.5419 |
0.3574 |
0.3465 |
0.5919 |
2.0 |
692 |
0.4692 |
0.8372 |
0.6180 |
0.4317 |
0.4475 |
0.4602 |
3.0 |
1038 |
0.4660 |
0.8361 |
0.6390 |
0.4132 |
0.4307 |
0.4602 |
4.0 |
1384 |
0.4649 |
0.8394 |
0.6767 |
0.4268 |
0.4487 |
0.4568 |
5.0 |
1730 |
0.4581 |
0.8372 |
0.6211 |
0.4259 |
0.4459 |
0.4498 |
6.0 |
2076 |
0.4586 |
0.8402 |
0.6572 |
0.4411 |
0.4606 |
0.4498 |
7.0 |
2422 |
0.4628 |
0.8372 |
0.6626 |
0.4118 |
0.4318 |
0.4516 |
8.0 |
2768 |
0.4520 |
0.8417 |
0.6340 |
0.4522 |
0.4741 |
0.4473 |
9.0 |
3114 |
0.4540 |
0.8387 |
0.6594 |
0.4217 |
0.4441 |
0.4473 |
10.0 |
3460 |
0.4559 |
0.8447 |
0.6911 |
0.4675 |
0.4855 |
0.451 |
11.0 |
3806 |
0.4530 |
0.8379 |
0.6461 |
0.4221 |
0.4468 |
0.4436 |
12.0 |
4152 |
0.4484 |
0.8428 |
0.6491 |
0.4691 |
0.4932 |
0.4436 |
13.0 |
4498 |
0.4499 |
0.8394 |
0.6503 |
0.4367 |
0.4648 |
0.4506 |
14.0 |
4844 |
0.4526 |
0.8391 |
0.6419 |
0.4251 |
0.4486 |
0.4418 |
15.0 |
5190 |
0.4523 |
0.8398 |
0.6584 |
0.4261 |
0.4522 |
0.4497 |
16.0 |
5536 |
0.4667 |
0.8372 |
0.6662 |
0.4110 |
0.4317 |
0.4497 |
17.0 |
5882 |
0.4474 |
0.8417 |
0.6431 |
0.4438 |
0.4686 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0