metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:90000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: yvette mimieux net worth
- text: is sweet potato fries a bad calorie for you
- text: >-
The name Gunnar is a Swedish baby name. In Swedish the meaning of the name
Gunnar is: Battle strong. American Meaning: The name Gunnar is an American
baby name.In American the meaning of the name Gunnar is: Battle
strong.Teutonic Meaning: The name Gunnar is a Teutonic baby name.In
Teutonic the meaning of the name Gunnar is: Bold warrior. Norse Meaning:
The name Gunnar is a Norse baby name. In Norse the meaning of the name
Gunnar is: Iighter. Scandinavian Meaning: The name Gunnar is a
Scandinavian baby name.he name Gunnar is a Teutonic baby name. In Teutonic
the meaning of the name Gunnar is: Bold warrior. Norse Meaning: The name
Gunnar is a Norse baby name. In Norse the meaning of the name Gunnar is:
Iighter. Scandinavian Meaning: The name Gunnar is a Scandinavian baby
name.
- text: what your fsh test results indicate
- text: >-
1 Lymphoma, the most common canine cancer, usually requires only
chemotherapy and its cost can come up to be around $450 to $500. 2
Osteosarcoma, another type of canine cancer, is usually treated with
chemotherapy along with amputation surgery.3 This type of chemotherapy
treatment costs approximately $450.nother factor is the type of drugs used
in the process. The size of the dog that needs to undergo chemotherapy can
also impact the cost. Even a dog very small in size with a single
cancerous lesion can cost $200 for chemotherapy, while the same problem on
a larger breed could cost more than $1,000 a month.
datasets:
- sentence-transformers/msmarco
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 53.738116037369885
energy_consumed: 0.1382501660330276
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.458
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on MS MARCO triplets
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.72
name: Dot Recall@5
- type: dot_recall@10
value: 0.86
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6227350359947015
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5469285714285713
name: Dot Mrr@10
- type: dot_map@100
value: 0.5547419639747225
name: Dot Map@100
- type: query_active_dims
value: 23.6200008392334
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999226131942886
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 86.9286117553711
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9971519359230925
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.72
name: Dot Recall@5
- type: dot_recall@10
value: 0.86
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6227350359947015
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5469285714285713
name: Dot Mrr@10
- type: dot_map@100
value: 0.5547419639747225
name: Dot Map@100
- type: query_active_dims
value: 23.6200008392334
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999226131942886
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 86.9286117553711
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9971519359230925
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.36666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.32799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.266
name: Dot Precision@10
- type: dot_recall@1
value: 0.021751342131059177
name: Dot Recall@1
- type: dot_recall@3
value: 0.07406240621283516
name: Dot Recall@3
- type: dot_recall@5
value: 0.09358105221669372
name: Dot Recall@5
- type: dot_recall@10
value: 0.11969365467146144
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3145066096009473
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4676904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.1297946574794519
name: Dot Map@100
- type: query_active_dims
value: 18.780000686645508
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9993847060911262
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 164.79444885253906
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9946007978227986
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.36666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.32799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.266
name: Dot Precision@10
- type: dot_recall@1
value: 0.021751342131059177
name: Dot Recall@1
- type: dot_recall@3
value: 0.07406240621283516
name: Dot Recall@3
- type: dot_recall@5
value: 0.09358105221669372
name: Dot Recall@5
- type: dot_recall@10
value: 0.11969365467146144
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3145066096009473
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4676904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.1297946574794519
name: Dot Map@100
- type: query_active_dims
value: 18.780000686645508
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9993847060911262
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 164.79444885253906
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9946007978227986
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.14400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.5
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.75
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6400441027431699
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6203571428571428
name: Dot Mrr@10
- type: dot_map@100
value: 0.6045362504066882
name: Dot Map@100
- type: query_active_dims
value: 26.940000534057617
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999117357953802
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 109.75908660888672
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99640393530539
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.14400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.5
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.75
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6400441027431699
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6203571428571428
name: Dot Mrr@10
- type: dot_map@100
value: 0.6045362504066882
name: Dot Map@100
- type: query_active_dims
value: 26.940000534057617
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999117357953802
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 109.75908660888672
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99640393530539
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.4266666666666667
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6333333333333334
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6733333333333332
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7533333333333333
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4266666666666667
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.20533333333333334
name: Dot Precision@5
- type: dot_precision@10
value: 0.14466666666666664
name: Dot Precision@10
- type: dot_recall@1
value: 0.3005837807103531
name: Dot Recall@1
- type: dot_recall@3
value: 0.46468746873761174
name: Dot Recall@3
- type: dot_recall@5
value: 0.49786035073889795
name: Dot Recall@5
- type: dot_recall@10
value: 0.5765645515571538
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5257619161129395
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5449920634920634
name: Dot Mrr@10
- type: dot_map@100
value: 0.4296909572869542
name: Dot Map@100
- type: query_active_dims
value: 23.11333401997884
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9992427319959382
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 113.39544145649826
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9962847964924808
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.531773940345369
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6966718995290424
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7506122448979593
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8230455259026688
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.531773940345369
name: Dot Precision@1
- type: dot_precision@3
value: 0.3291470434327577
name: Dot Precision@3
- type: dot_precision@5
value: 0.25535321821036105
name: Dot Precision@5
- type: dot_precision@10
value: 0.18231397174254316
name: Dot Precision@10
- type: dot_recall@1
value: 0.3098648701114875
name: Dot Recall@1
- type: dot_recall@3
value: 0.4649217800565723
name: Dot Recall@3
- type: dot_recall@5
value: 0.5185635370811593
name: Dot Recall@5
- type: dot_recall@10
value: 0.6012619916233037
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.570153816546152
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6274141187610573
name: Dot Mrr@10
- type: dot_map@100
value: 0.49205810209697926
name: Dot Map@100
- type: query_active_dims
value: 40.89984672205474
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9986599879849926
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 112.74959253323884
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9963059566039827
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.26
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.26
name: Dot Precision@1
- type: dot_precision@3
value: 0.16
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.094
name: Dot Precision@10
- type: dot_recall@1
value: 0.13166666666666665
name: Dot Recall@1
- type: dot_recall@3
value: 0.22899999999999998
name: Dot Recall@3
- type: dot_recall@5
value: 0.26966666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.3686666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.29349270164622415
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3810238095238095
name: Dot Mrr@10
- type: dot_map@100
value: 0.22256540249654586
name: Dot Map@100
- type: query_active_dims
value: 52.70000076293945
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9982733765558306
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 152.81748962402344
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9949932019650081
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.76
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.88
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.88
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.76
name: Dot Precision@1
- type: dot_precision@3
value: 0.6066666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.5840000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.514
name: Dot Precision@10
- type: dot_recall@1
value: 0.08858465342637668
name: Dot Recall@1
- type: dot_recall@3
value: 0.17454996352915306
name: Dot Recall@3
- type: dot_recall@5
value: 0.2491328586940767
name: Dot Recall@5
- type: dot_recall@10
value: 0.358206868666866
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.632129041524978
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8133333333333332
name: Dot Mrr@10
- type: dot_map@100
value: 0.490256496112331
name: Dot Map@100
- type: query_active_dims
value: 22.979999542236328
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9992471004671307
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 103.23821258544922
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9966175803490777
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.8
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8
name: Dot Precision@1
- type: dot_precision@3
value: 0.30666666666666664
name: Dot Precision@3
- type: dot_precision@5
value: 0.204
name: Dot Precision@5
- type: dot_precision@10
value: 0.10399999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7666666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.8666666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.9333333333333332
name: Dot Recall@5
- type: dot_recall@10
value: 0.9433333333333332
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8746461544855423
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8663333333333334
name: Dot Mrr@10
- type: dot_map@100
value: 0.8475954415954416
name: Dot Map@100
- type: query_active_dims
value: 41.619998931884766
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9986363934561338
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 154.98318481445312
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9949222467461355
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.172
name: Dot Precision@5
- type: dot_precision@10
value: 0.10599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.1620793650793651
name: Dot Recall@1
- type: dot_recall@3
value: 0.36180158730158724
name: Dot Recall@3
- type: dot_recall@5
value: 0.4036349206349206
name: Dot Recall@5
- type: dot_recall@10
value: 0.4941031746031746
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.38562756897614053
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.43427777777777765
name: Dot Mrr@10
- type: dot_map@100
value: 0.3209789709019607
name: Dot Map@100
- type: query_active_dims
value: 22.68000030517578
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9992569294179551
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 89.73922729492188
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9970598510158272
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.5199999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.324
name: Dot Precision@5
- type: dot_precision@10
value: 0.172
name: Dot Precision@10
- type: dot_recall@1
value: 0.45
name: Dot Recall@1
- type: dot_recall@3
value: 0.78
name: Dot Recall@3
- type: dot_recall@5
value: 0.81
name: Dot Recall@5
- type: dot_recall@10
value: 0.86
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8341414369684795
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9266666666666665
name: Dot Mrr@10
- type: dot_map@100
value: 0.7830202707785705
name: Dot Map@100
- type: query_active_dims
value: 43.13999938964844
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9985865932969776
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 108.24322509765625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9964535998591949
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.84
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.94
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.84
name: Dot Precision@1
- type: dot_precision@3
value: 0.35999999999999993
name: Dot Precision@3
- type: dot_precision@5
value: 0.22399999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.12199999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.774
name: Dot Recall@1
- type: dot_recall@3
value: 0.8853333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.902
name: Dot Recall@5
- type: dot_recall@10
value: 0.93
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.891220122907666
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8916666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.8739838721281753
name: Dot Map@100
- type: query_active_dims
value: 21.780000686645508
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999286416332919
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 24.841062545776367
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9991861259895886
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.22399999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.162
name: Dot Precision@10
- type: dot_recall@1
value: 0.09266666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.1696666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.22966666666666669
name: Dot Recall@5
- type: dot_recall@10
value: 0.3306666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.32673772222029135
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5299920634920635
name: Dot Mrr@10
- type: dot_map@100
value: 0.24677603468739176
name: Dot Map@100
- type: query_active_dims
value: 40.18000030517578
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9986835724950798
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 145.2197265625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.995242129396419
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.12
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.44
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.12
name: Dot Precision@1
- type: dot_precision@3
value: 0.14666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.10800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.07200000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.12
name: Dot Recall@1
- type: dot_recall@3
value: 0.44
name: Dot Recall@3
- type: dot_recall@5
value: 0.54
name: Dot Recall@5
- type: dot_recall@10
value: 0.72
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.40190838047249483
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.30241269841269836
name: Dot Mrr@10
- type: dot_map@100
value: 0.3152551920928219
name: Dot Map@100
- type: query_active_dims
value: 142.10000610351562
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9953443415862815
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 133.527099609375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.995625217888429
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.54
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.54
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.495
name: Dot Recall@1
- type: dot_recall@3
value: 0.615
name: Dot Recall@3
- type: dot_recall@5
value: 0.715
name: Dot Recall@5
- type: dot_recall@10
value: 0.76
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6395168665161247
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6164444444444444
name: Dot Mrr@10
- type: dot_map@100
value: 0.6051482940863745
name: Dot Map@100
- type: query_active_dims
value: 54.2400016784668
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9982229211166219
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 172.6594696044922
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9943431141601305
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6530612244897959
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8367346938775511
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8979591836734694
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9795918367346939
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6530612244897959
name: Dot Precision@1
- type: dot_precision@3
value: 0.6122448979591837
name: Dot Precision@3
- type: dot_precision@5
value: 0.5795918367346938
name: Dot Precision@5
- type: dot_precision@10
value: 0.5040816326530612
name: Dot Precision@10
- type: dot_recall@1
value: 0.045827950812536176
name: Dot Recall@1
- type: dot_recall@3
value: 0.1279025170251966
name: Dot Recall@3
- type: dot_recall@5
value: 0.19531048384271374
name: Dot Recall@5
- type: dot_recall@10
value: 0.32173552649478127
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5552938710432158
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7592565597667638
name: Dot Mrr@10
- type: dot_map@100
value: 0.4021024805202534
name: Dot Map@100
- type: query_active_dims
value: 20.53061294555664
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9993273503392452
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 106.17720031738281
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9965212895512292
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on MS MARCO triplets
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the msmarco dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl")
# Run inference
queries = [
"canine ultrasound cost",
]
documents = [
'VetInfo indicates that any type of canine ultrasound costs anywhere from $300 to $500 depending on what region of the country you live in and whether or not a veterinarian or a technician performs the procedure.',
'1 Lymphoma, the most common canine cancer, usually requires only chemotherapy and its cost can come up to be around $450 to $500. 2 Osteosarcoma, another type of canine cancer, is usually treated with chemotherapy along with amputation surgery.3 This type of chemotherapy treatment costs approximately $450.nother factor is the type of drugs used in the process. The size of the dog that needs to undergo chemotherapy can also impact the cost. Even a dog very small in size with a single cancerous lesion can cost $200 for chemotherapy, while the same problem on a larger breed could cost more than $1,000 a month.',
'Plant Life. There are many different plants in the rain forest. Some of the plants include vines, bromeliads, the passion fruit plant and the Victorian water lily. Vines in the rainforest can be as thick as the average human average human body and some can grow to be 3,000 ft long.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[33.7473, 25.6638, 0.2965]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.38 | 0.38 | 0.52 | 0.26 | 0.76 | 0.8 | 0.32 | 0.9 | 0.84 | 0.44 | 0.12 | 0.54 | 0.6531 |
dot_accuracy@3 | 0.66 | 0.54 | 0.7 | 0.46 | 0.88 | 0.9 | 0.54 | 0.96 | 0.94 | 0.56 | 0.44 | 0.64 | 0.8367 |
dot_accuracy@5 | 0.72 | 0.58 | 0.72 | 0.58 | 0.88 | 0.96 | 0.6 | 0.96 | 0.96 | 0.62 | 0.54 | 0.74 | 0.898 |
dot_accuracy@10 | 0.86 | 0.62 | 0.78 | 0.7 | 0.9 | 0.98 | 0.7 | 0.96 | 0.96 | 0.76 | 0.72 | 0.78 | 0.9796 |
dot_precision@1 | 0.38 | 0.38 | 0.52 | 0.26 | 0.76 | 0.8 | 0.32 | 0.9 | 0.84 | 0.44 | 0.12 | 0.54 | 0.6531 |
dot_precision@3 | 0.22 | 0.3667 | 0.2333 | 0.16 | 0.6067 | 0.3067 | 0.24 | 0.52 | 0.36 | 0.2733 | 0.1467 | 0.2333 | 0.6122 |
dot_precision@5 | 0.144 | 0.328 | 0.144 | 0.124 | 0.584 | 0.204 | 0.172 | 0.324 | 0.224 | 0.224 | 0.108 | 0.16 | 0.5796 |
dot_precision@10 | 0.086 | 0.266 | 0.082 | 0.094 | 0.514 | 0.104 | 0.106 | 0.172 | 0.122 | 0.162 | 0.072 | 0.086 | 0.5041 |
dot_recall@1 | 0.38 | 0.0218 | 0.5 | 0.1317 | 0.0886 | 0.7667 | 0.1621 | 0.45 | 0.774 | 0.0927 | 0.12 | 0.495 | 0.0458 |
dot_recall@3 | 0.66 | 0.0741 | 0.66 | 0.229 | 0.1745 | 0.8667 | 0.3618 | 0.78 | 0.8853 | 0.1697 | 0.44 | 0.615 | 0.1279 |
dot_recall@5 | 0.72 | 0.0936 | 0.68 | 0.2697 | 0.2491 | 0.9333 | 0.4036 | 0.81 | 0.902 | 0.2297 | 0.54 | 0.715 | 0.1953 |
dot_recall@10 | 0.86 | 0.1197 | 0.75 | 0.3687 | 0.3582 | 0.9433 | 0.4941 | 0.86 | 0.93 | 0.3307 | 0.72 | 0.76 | 0.3217 |
dot_ndcg@10 | 0.6227 | 0.3145 | 0.64 | 0.2935 | 0.6321 | 0.8746 | 0.3856 | 0.8341 | 0.8912 | 0.3267 | 0.4019 | 0.6395 | 0.5553 |
dot_mrr@10 | 0.5469 | 0.4677 | 0.6204 | 0.381 | 0.8133 | 0.8663 | 0.4343 | 0.9267 | 0.8917 | 0.53 | 0.3024 | 0.6164 | 0.7593 |
dot_map@100 | 0.5547 | 0.1298 | 0.6045 | 0.2226 | 0.4903 | 0.8476 | 0.321 | 0.783 | 0.874 | 0.2468 | 0.3153 | 0.6051 | 0.4021 |
query_active_dims | 23.62 | 18.78 | 26.94 | 52.7 | 22.98 | 41.62 | 22.68 | 43.14 | 21.78 | 40.18 | 142.1 | 54.24 | 20.5306 |
query_sparsity_ratio | 0.9992 | 0.9994 | 0.9991 | 0.9983 | 0.9992 | 0.9986 | 0.9993 | 0.9986 | 0.9993 | 0.9987 | 0.9953 | 0.9982 | 0.9993 |
corpus_active_dims | 86.9286 | 164.7944 | 109.7591 | 152.8175 | 103.2382 | 154.9832 | 89.7392 | 108.2432 | 24.8411 | 145.2197 | 133.5271 | 172.6595 | 106.1772 |
corpus_sparsity_ratio | 0.9972 | 0.9946 | 0.9964 | 0.995 | 0.9966 | 0.9949 | 0.9971 | 0.9965 | 0.9992 | 0.9952 | 0.9956 | 0.9943 | 0.9965 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4267 |
dot_accuracy@3 | 0.6333 |
dot_accuracy@5 | 0.6733 |
dot_accuracy@10 | 0.7533 |
dot_precision@1 | 0.4267 |
dot_precision@3 | 0.2733 |
dot_precision@5 | 0.2053 |
dot_precision@10 | 0.1447 |
dot_recall@1 | 0.3006 |
dot_recall@3 | 0.4647 |
dot_recall@5 | 0.4979 |
dot_recall@10 | 0.5766 |
dot_ndcg@10 | 0.5258 |
dot_mrr@10 | 0.545 |
dot_map@100 | 0.4297 |
query_active_dims | 23.1133 |
query_sparsity_ratio | 0.9992 |
corpus_active_dims | 113.3954 |
corpus_sparsity_ratio | 0.9963 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.5318 |
dot_accuracy@3 | 0.6967 |
dot_accuracy@5 | 0.7506 |
dot_accuracy@10 | 0.823 |
dot_precision@1 | 0.5318 |
dot_precision@3 | 0.3291 |
dot_precision@5 | 0.2554 |
dot_precision@10 | 0.1823 |
dot_recall@1 | 0.3099 |
dot_recall@3 | 0.4649 |
dot_recall@5 | 0.5186 |
dot_recall@10 | 0.6013 |
dot_ndcg@10 | 0.5702 |
dot_mrr@10 | 0.6274 |
dot_map@100 | 0.4921 |
query_active_dims | 40.8998 |
query_sparsity_ratio | 0.9987 |
corpus_active_dims | 112.7496 |
corpus_sparsity_ratio | 0.9963 |
Training Details
Training Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 90,000 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 4 tokens
- mean: 9.1 tokens
- max: 30 tokens
- min: 24 tokens
- mean: 79.91 tokens
- max: 218 tokens
- min: 22 tokens
- mean: 77.09 tokens
- max: 256 tokens
- Samples:
query positive negative when do manga complete editions
Volumes 9 and 10 the Sailor Moon Manga Complete Editions are now out. Last week, March 25th, volumes 9 and 10 of the Sailor Moon Manga Complete Editions were released in Japan. Volume 9 features Endymion and Serenity on the cover while volume 10 features all 10 Sailor Guardians.
Destiny: The Taken King will be released in standard download, collectorâs edition download, and both âCollectorâsâ and âLegendaryâ game disc editions on September 15, 2015.
the define of homograph
LINK / CITE ADD TO WORD LIST. noun. The definition of a homograph is a word that is spelled like another word or other words, but has a different meaning and sometimes sounds different. An example of a homograph is evening, which is the time of day after the sun has set or making something level or flat.
As verbs the difference between describe and define. is that describe is to represent in words while define is to determine. As a noun define is. (computing
what is a cv in resume writing
Curriculum Vitae (CV) is Latin for âcourse of life.â In contrast, resume is French for âsummary.â Both CVs & Resumes: 1 Are tailored for the specific job/company you are applying to. 2 Should represent you as the best qualified candidate. 3 Are used to get you an interview. Do not usually include personal interests.
Resume Samples » Resume Objective » Legal Resume Objective » Legal Assistant Resume Objective. Job Description: Legal assistant is responsible to manage and handle various activities of legal department. Preparing legal documents such as contracts, wills and appeals.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 0.001, "lambda_query": 5e-05 }
Evaluation Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 10,000 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 5 tokens
- mean: 9.24 tokens
- max: 53 tokens
- min: 13 tokens
- mean: 80.9 tokens
- max: 204 tokens
- min: 17 tokens
- mean: 78.24 tokens
- max: 234 tokens
- Samples:
query positive negative the largest vietnamese population in the united states is in
The largest number of Vietnamese outside Vietnam is in Orange County, California (184,153, or 6.1 percent of the county's population), followed by Los Angeles and Santa Clara counties; the three counties accounted for 26 percent of the Vietnamese immigrant population in the United States.
Population by Place in the United States There are 29,257 places in the United States. This section compares Hibbing to the 50 most populous places in the United States. The least populous of the compared places has a population of 371,267.
how many calories in a tablespoon of flaxseed
Calorie Content. A 2-tablespoon serving of ground flaxseed has about 75 calories, according to the U.S. Department of Agriculture. These calories consist of 2.6 grams of protein, 4 grams of carbohydrates -- almost all of which is fiber -- and 6 grams of fat.
You can also use flaxseed meal to replace an egg. Use 1 tablespoon flaxseed meal and 3 tablespoons water. You can replace up to two eggs in a recipe in this manner, but do not use flaxseed meal as an egg replacement if you are already using it as an oil replacement. Flaxseed has many health benefits.
who wrote the house of seven gables
The author of The House Of Seven Gables is Nathaniel Hawthorne.
Abigail Adams Wrote To John In 1776: Remember The Ladies Or We'll Rebel Adams wrote a feminist letter to her husband just before U.S. independence.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 0.001, "lambda_query": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0178 | 100 | 173.8874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0356 | 200 | 11.8803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0533 | 300 | 1.0264 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0711 | 400 | 0.3923 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0889 | 500 | 0.32 | 0.2369 | 0.4932 | 0.3001 | 0.5819 | 0.4584 | - | - | - | - | - | - | - | - | - | - |
0.1067 | 600 | 0.2483 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1244 | 700 | 0.28 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1422 | 800 | 0.2095 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.16 | 900 | 0.2093 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1778 | 1000 | 0.1636 | 0.1898 | 0.6051 | 0.2845 | 0.6124 | 0.5006 | - | - | - | - | - | - | - | - | - | - |
0.1956 | 1100 | 0.1661 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2133 | 1200 | 0.1964 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2311 | 1300 | 0.1937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2489 | 1400 | 0.1771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2667 | 1500 | 0.1643 | 0.1549 | 0.5868 | 0.3176 | 0.5769 | 0.4938 | - | - | - | - | - | - | - | - | - | - |
0.2844 | 1600 | 0.1987 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3022 | 1700 | 0.178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.32 | 1800 | 0.1227 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3378 | 1900 | 0.1478 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3556 | 2000 | 0.1502 | 0.1563 | 0.6249 | 0.3309 | 0.6088 | 0.5215 | - | - | - | - | - | - | - | - | - | - |
0.3733 | 2100 | 0.1623 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3911 | 2200 | 0.1703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4089 | 2300 | 0.1804 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4267 | 2400 | 0.121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4444 | 2500 | 0.1451 | 0.1325 | 0.5620 | 0.3233 | 0.6197 | 0.5017 | - | - | - | - | - | - | - | - | - | - |
0.4622 | 2600 | 0.1609 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.48 | 2700 | 0.1415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4978 | 2800 | 0.1555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5156 | 2900 | 0.1581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5333 | 3000 | 0.1351 | 0.1546 | 0.5901 | 0.3187 | 0.6299 | 0.5129 | - | - | - | - | - | - | - | - | - | - |
0.5511 | 3100 | 0.1308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5689 | 3200 | 0.1313 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5867 | 3300 | 0.1248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6044 | 3400 | 0.1295 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6222 | 3500 | 0.1398 | 0.1449 | 0.6096 | 0.3285 | 0.5975 | 0.5119 | - | - | - | - | - | - | - | - | - | - |
0.64 | 3600 | 0.1105 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6578 | 3700 | 0.0911 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6756 | 3800 | 0.1683 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6933 | 3900 | 0.1202 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 4000 | 0.135 | 0.1592 | 0.5989 | 0.3109 | 0.6460 | 0.5186 | - | - | - | - | - | - | - | - | - | - |
0.7289 | 4100 | 0.1205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7467 | 4200 | 0.1432 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7644 | 4300 | 0.105 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7822 | 4400 | 0.1028 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8 | 4500 | 0.1386 | 0.1383 | 0.5859 | 0.3084 | 0.6276 | 0.5073 | - | - | - | - | - | - | - | - | - | - |
0.8178 | 4600 | 0.1068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8356 | 4700 | 0.1262 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8533 | 4800 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8711 | 4900 | 0.1331 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8889 | 5000 | 0.1436 | 0.1279 | 0.6261 | 0.3136 | 0.6314 | 0.5237 | - | - | - | - | - | - | - | - | - | - |
0.9067 | 5100 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9244 | 5200 | 0.1379 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9422 | 5300 | 0.1343 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.96 | 5400 | 0.1475 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9778 | 5500 | 0.0988 | 0.1311 | 0.6227 | 0.3145 | 0.64 | 0.5258 | - | - | - | - | - | - | - | - | - | - |
0.9956 | 5600 | 0.1072 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.6227 | 0.3145 | 0.6400 | 0.5702 | 0.2935 | 0.6321 | 0.8746 | 0.3856 | 0.8341 | 0.8912 | 0.3267 | 0.4019 | 0.6395 | 0.5553 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.138 kWh
- Carbon Emitted: 0.054 kg of CO2
- Hours Used: 0.458 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}